论文部分内容阅读
行人检测与识别是计算机视觉与模式识别研究的重要领域之一,在智能监控、虚拟现实、人机交互和辅助驾驶系统等领域都有广泛的应用前景和市场价值。在智能视觉监控领域,行人检测与识别是行人跟踪、行为分析和后续报警处理的基础。虽然现有的行人检测与识别算法在各类数据库上取得了不错的检测和识别效果,但是这些算法由于计算复杂度太高等问题仍然无法满足实时监控系统的要求。为了解决这一问题,本文针对监控场景下的实时行人检测与识别展开学习和研究,主要工作和贡献包括:
①介绍了基本的行人检测与识别方法,包括:感兴趣区域分割方法,基于整体特征和部件模型的行人检测方法,基于颜色、纹理和形状特征的行人匹配与识别方法。
②由于现有的监控系统多采用固定的摄像头安装方式,针对这一特性以及监控系统对于行人检测的实时性要求,本文提出了一种基于Boosted Cascade的行人检测方法。该方法充分利用了摄像头静止的有利条件,通过感兴趣区域的精确分割和场景学习模型有效地减少了子窗口的搜索空间。对于每一个搜索子窗口使用多尺度HOG特征和Boosted Cascade结构分类器进行目标检测。该方法有效地提高了Boosted Cascade方法的检测效率并在多人监控场景下取得了较高的检测精度。
③随着目标检测技术的发展,检测精度不断提升的同时检测效率显得越来越重要。但是现有的检测方法主要是基于高维特征的方法,高维特征的计算复杂度直接影响了检测效率。为此本文提出了一种基于偏最小二乘回归的子窗口搜索策略,希望从搜索策略层面减少搜索窗的个数进而提高检测效率。首先对图像进行稀疏扫描,配合粗分类器检测得到只包含行人某部分的子窗口作为候选窗口。对于每一个候选窗口,使用基于偏最小二乘回归的位置校正模型预测该窗口与目标真实位置的偏移量,并根据偏移量对候选窗口进行修正。由于修正并不是十分精确,需要在候选窗口附近进行稠密扫描获取行人目标的精确位置。该方法在不降低检测率的前提下相比于传统滑动窗口扫描方法大约提速10倍左右。
④在对行人检测与识别算法学习和研究的基础上,本文实现了两个针对监控场景的应用系统:室内行人检测与识别系统和会场实时人数统计与管理系统。室内行人检测与识别系统主要包括:感兴趣区域分割模块、检测提速模块、行人检测模块和行人匹配和识别模块。该系统可以实现室内监控场景下多个行人的准确检测和识别,并且达到了15帧/秒以上的实时处理要求。针对会场参会和缺席人数统计的需求,本文开发了一套会场实时人数统计与管理系统。该系统包括座次信息管理模块、入座状态管理模块和其他告警模块。针对会场座位的位置固定性和颜色一致性,首先用局部二值模式特征和简化的梯度方向直方图特征对座位进行描述,然后使用线性支持向量机分类器实现非空/空座的实时判断。以此为基础可实现会场参会人数和缺席人数的实时统计、参会人员信息实时查询、离席提醒和其他用户自定义数据统计。本文中实现的监控系统是行人检测与识别算法的典型应用,拥有广阔的应用价值和市场前景。