【摘 要】
:
叶片是航空发动机最重要的组成部分,随着航空发动机推重比的不断提高,叶片的工作环境越来越恶劣,由叶片造成的发动机事故也越来越多,其中,叶片断裂成为航空发动机事故的第一“杀手”,避免叶片断裂最行之有效的方法就是在航空发动机叶片表面制备一层具备高阻尼性能的无机纳米结构涂层,阻尼涂层减振是解决航空发动机叶片断裂问题的有效方法之一。因此,准确模拟无机纳米涂层缺陷区域微观结构,揭示缺陷区域对涂层阻尼特性的影响
论文部分内容阅读
叶片是航空发动机最重要的组成部分,随着航空发动机推重比的不断提高,叶片的工作环境越来越恶劣,由叶片造成的发动机事故也越来越多,其中,叶片断裂成为航空发动机事故的第一“杀手”,避免叶片断裂最行之有效的方法就是在航空发动机叶片表面制备一层具备高阻尼性能的无机纳米结构涂层,阻尼涂层减振是解决航空发动机叶片断裂问题的有效方法之一。因此,准确模拟无机纳米涂层缺陷区域微观结构,揭示缺陷区域对涂层阻尼特性的影响,对航空发动机运转可靠性具有重大意义。本文以分子动力学理论为基础,使用分子动力学建模软件Materials Studio分别建立了含点、线、面三种缺陷形式的Ti3Al涂层,选取合适的分子动力学初始条件(边界条件、势函数、系综等),并利用Lammps软件得到弛豫后能量稳定的Ti3Al涂层构型,通过计算得出应变能密度、韧性模量、回弹模量、比阻尼等参数值,并观察微观结构图,分析涂层中缺陷区域对Ti3Al涂层阻尼性能的影响。通过对应力-应变曲线的分析对比可知,内部含缺陷的Ti3Al涂层对外载荷的消耗能力均强于无缺陷的Ti3Al涂层。造成这一现象的主要原因是模型内部位错缺陷的产生及运动(位错的滑移、攀移、交割、塞积等),且温度的提高会影响模型内部缺陷区域的结构变化,从而使阻尼涂层的阻尼性能发生变化。
其他文献
关节是人体活动的重要器官。关节软骨在异常载荷下可以引起其内部组成成分变化,改变软骨的力学性能,从而引起软骨继发性损伤。所以研究软骨内细观结构的力学性能改变,对软骨力学行为的影响非常重要。此研究可以补充和完善关节软骨损伤演化的力学机制,为软骨疾病的预防和治疗提供参考数据。本文从关节软骨的细观结构出发,运用ABQUS软件建立纤维增强的多孔粘弹性关节软骨的细观数值模型,模型考虑了纤维和基质随软骨深度变化
由人类活动排放的CO_2造成的全球气候变暖日益严重,CO_2减排势在必行。自利用气体水合物技术封存CO_2的方法提出以来受到了广泛的关注,对CO_2水合物的生成分解特性进行研究对于CO_2水合物封存技术的发展具有重大的意义。本文利用自主设计的水合物生成分解磁共振成像(MRI)实验系统,分别对气水界面处CO_2水合物膜和多孔介质中CO_2水合物的生成和分解过程进行了系统的实验研究。利用高场MRI系统
渤东地区馆陶组沉积是研究坳陷型层序源-汇系统的有利试验区。基于馆陶组三级层序地层格架的建立,本论文以馆陶组不同沉积时期“源-渠-汇”系统为主线,明确了不同时期物源供给方式及搬运通道特征,刻画了不同时期沉积体系及沉积充填演化特征,之后通过与洱海断陷湖盆源-汇系统对比,建立了坳陷型层序源-汇系统模型。论文成果如下:(1)根据走滑断裂的东、西两支将渤东地区整体划为3个大区:伸展段控A区、走滑夹持B区与稳
随着医疗技术的不断进步,人们在手术可以达到治疗效果的基础上开始注重如何对病人的伤害减到最小,恢复期变得更短。骨钻削在外科手术中扮演着非常重要的角色。在钻孔过程中由于不合理的钻削参数极易导致热损伤甚至骨坏死及骨强度的变化。研究表明,超声振动钻削可以有效的减小钻削哦轴向力,降低钻削温度。因此,本文将超声振动钻削技术应用到骨钻削当中。并根据骨结构的特性,改用三尖钻作为钻削刀具进行了试验研究。通过灰色关联
钛合金筒形件由钛板滚弯焊接而成,钛合金材料室温成形性能较差,传统校形工艺往往存在工件卸载回弹明显和整体受力不均匀易破裂等缺陷,大型钛合金筒形件校形精度问题尤为突出。电磁成形是一种高速率金属塑性加工技术,该技术可以显著提升钛合金在室温下的塑性成形能力和变形均匀性,提高工件成形精度。本文利用电磁校形技术原理,针对直径Φ300mm、高600mm、壁厚2mm的大型航空钛合金筒形件进行校圆实验研究,设计了一
随着海上风电产业的不断发展,海上风电运维船的需求也不断增加,而这其中能够实现自动补偿的登靠步桥也成为研究的重点。由于登靠步桥回转回路大转矩、非线性以及海上海况的复杂性导致登靠步桥的稳定控制成为难题。本文针对登靠步桥回转回路的稳定控制进行研究,通过登靠步桥运动学、动力学分析和液压系统研究设计回转回路的检测控制方案。具体工作包括:针对回转回路大转矩小转速的特点设计回转回路的控制方案,主要包括速度环和位
随着深水平台的作业水深增加,在现有海洋工程水池中进行浮式平台物理模型试验时,需要将锚泊系统进行截断。其中,主动式截断锚泊试验是目前的发展方向之一,可以解决截断和全水深锚泊系统的静力和动力特性相似问题。本文主要针对实现锚泊系统截断点运动的执行机构及其跟踪控制展开研究。首先,选择Stewart平台作为适用的执行机构,基于运动学原理,利用MATLAB/Simulink建立其仿真模型,利用不规则位移运动信
风力机叶片、飞机机翼等曲面结构中裂纹等缺陷的萌生及扩展导致结构安全性能指标降低,带来安全隐患,其健康监测是质量监控与安全运行的核心关键。Lamb波具有传播距离远、对细微缺陷敏感性高,检测面积大等优点,被认为在结构健康监测中最有应用前景。但常用压电传感元件压电片硬度大、质地脆,不适用于曲面结构检测。针对上述问题,论文开展了含裂纹曲面板中Lamb波传播机理研究,研制一种柔韧性好、适合集成于曲面结构的0
随着通信技术的日新月异,5G有望在2020年及以后商业化,毫米波通信技术和大规模多输入多输出(Multiple Input Multiple Output,MIMO)技术是5G的关键技术。毫米波通信技术使得通信系统的数据速率得到很大的提高,但是数据速率的提高通常会导致很高的能耗,而且大规模MIMO系统由于部署了大量天线也会造成很高的电路功耗,这必然会降低用户的体验质量。无线能量传输技术作为一种潜在
离子交换膜广泛应用于燃料电池、金属空气电池、电解等领域,起到分隔正负极,防止短路、传输离子等作用。尤其聚合物基离子交换膜具有结构设计性好、成本低、成膜性好等优势,