论文部分内容阅读
我国氧化铝工业规模巨大,资源、能源、环境等约束日益凸显。铝土矿资源匮乏日益凸显,高铝硅比的高硫铝土矿具有重要的利用价值,脱硫处理获得低硫铝土矿可以缓解高品位铝土矿资源短缺的问题。本文主要研究了电解脱硫过程中黄铁矿的氧化机理,基于量子化学密度泛函理论计算出水电解产生羟基自由基对黄铁矿的氧化历程;通过超声、加压等外场强化电解水过程羟基自由基的形成,提高电解脱硫效率,并结合电化学表征,研究了超声和加压强化电解水产生羟基自由基机理;根据电极活性、耐腐蚀性、脱硫率等参数,研究了六种普通电极材料的电解脱硫特性和电化学腐蚀行为,确定了碱性体系的最佳电极材料,为电解脱硫的工业化应用提供了可能性。主要取得如下结果:(1)通过XPS和阴离子色谱分别研究了电解前后黄铁矿结构与电解液离子种类变化规律。结果表明电解后的黄铁矿表面被活化,出现孔道与褶皱。黄铁矿电解氧化后表面硫物种S2-丰度明显增加,同时表面形成Fe(OH)3。电解后溶液中出现硫代硫酸根离子(高达82ppm)和少量硫酸根离子(≤3ppm),同时在电解过程中发生耗碱反应。通过ESR研究羟基自由基形成规律,结果表明在碱性溶液中电解1h后,黄铁矿电解脱硫环境产生羟基自由基浓度为41.01 μmol/L。随叔丁基醇添加量的增加,CV曲线上Fe和S的氧化峰峰强逐渐下降,证明羟基自由基是氧化黄铁矿的关键介质。因此,在电解脱硫过程中,主要氧化介质为羟基自由基,黄铁矿主要被氧化为S2032-进入溶液,同时产生Fe(OH)3。(2)密度泛函(DFT)计算结果表明,当羟基自由基单独连续吸附在黄铁矿(100)面时,很难将矿物解离脱除;当羟基自由基连续吸附在黄铁矿(100)面时,羟基自由基首先吸附Fe原子,再吸附S原子,当第四个羟基自由基吸附S原子时,Fe-S键断裂,形成S2O32-,最终,S原子和Fe原子被氧化成S042-和Fe(OH)3。羟基自由基中的氧参与含硫离子生成,氢原子生成氢离子。因此,羟基自由基氧化脱硫是耗碱过程。(3)研究了超声水电解过程阳极区羟自由基形成规律。结果表明超声电解不仅可以提高氧化反应前驱体的扩散系数,从而强化电解液中的物质传递,还可以强化氢氧根的电子得失。从Tafel、EIS曲线得知,超声使OER平衡电位正移,使平衡电流增加,表明超声波抑制了 OER的热力学条件,改善了 OER的动力学条件。超声使OER的Rct增加,Rs下降,证明了超声抑制了析氧过程,强化了离子扩散。通过模拟计算结果可知,超声促进其在电极上脱附过程,增加了活化空间,从而导致羟基自由基量的增加。超声增加了 Pt和Ni电极电解铝土矿脱硫率,值得一提的是超声耦合镍电极电解脱硫可达到无超声铂电极电解脱硫效果。(4)研究了加压电解过程阳极/阴极羟基自由基形成规律。脱硫率与ESR结果表明,在加压电解脱硫过程中,HO·是阳极区的主要氧化介质,其含量随压力增加而增加,与脱硫率规律趋势一致。根据Tafel与EIS曲线可知,加压强化了水的解离、OH-的传质及其在阳极的电子得失,并抑制了 HO·的猝灭,抑制氧气的析出,从而增加了阳极去羟基自由基的数量。采用电-芬顿方式实现阴极产生羟基自由基,根据脱硫率与ESR可知,加压增大了水溶液中氧气的浓度,强化了氧气在阴极的电子得失,强化形成02-,再和H+结合生成H2O2,从而电-芬顿反应得到强化,羟基自由基的量增多。电-芬顿法将二维氧化升级为三维氧化,大大增加被氧化物质与羟基自由基的接触机会。(5)量化对比了电解脱硫过程阳极材料的电化学行为。通过考察六种电极材料的腐蚀行为、脱硫效果、电化学行为,确定了铝土矿电解脱硫技术的工业化阳极材料。用硫代硫酸钠溶液作为模拟电解液,利用Tafel和CV曲线研究了六中阳极材料的电化学行为。结果表明,它们的腐蚀电位依次为Ni>C>SS>Fe>Cu>Pb-Ag。铝土矿电解的脱硫率和电解槽电压顺序分别为Cu>Ni>Fe>SS>C>Pb-Ag和Ni>Fe>SS>Cu>C>Pb-Ag。最后,Ni被选作铝土矿电解脱硫的理想阳极材料,为电解脱硫工业化应用提供了可能性。