左1-正交类的同调有限性

来源 :南京大学 | 被引量 : 0次 | 上传用户:zlyfeng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
众所周知,几乎可裂序列是Artin代数表示论中一个非常重要的研究工具。为了证明子范畴上几乎可裂序列的存在性,Auslander和Smalφ于1980年引入了同调有限子范畴的概念。自此以后,子范畴的同调有限性成为Artin代数表示论的一个重要研究对象。本文的主要目的是将Artin代数中关于子范畴的同调有限性的一些结论推广到交换Noether环上。我们证明了,设R是一个交换Norther局部环,则modR中的子范畴SubR是反变有限的,⊥R是共变有限的。
其他文献
对于微分同胚f的一个紧致不变集合∧,如果人是传递的,并且存在人的一个邻域U,使得∩n∈Nfn(U)=∧,则称∧是一个拓扑吸引子。本文证明了对于任何维数大于等于3的紧致光滑流形M,对于
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
期刊
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
人脸识别作为一种生物特征识别技术,近年来受到了广泛的关注,成为了应用数学、信息技术紧密结合的前沿热点问题。虽然人脸识别已经应用在了一些行业,但是在大规模数据库的情
本文研究的是有限和无穷可数状态空间上生灭过程的首次击中时和强平稳时间的分布.之前大多是通过生灭过程向前和向后跳的速率来研究这个问题的.本文从离散时间生灭过程的转移概
本文主要研究支持向量机的各种模型的解法.首先我们对L1软间隔的支持向量机模型进行对偶分析,得到其KKT系统;我们再利用投影定理得到非光滑的投影方程;然后我们用光滑函数光滑其
学位
网络控制系统(Networked Control System, NCS)是一个集通信网络和控制系统于一体的系统.它具有信息资源共享、连线少、易于扩展、易于维护、高效率、高可靠性及灵活等很多优
高考已经落下帷幕,留给我们教师的思考很多,学生考试后的一些情绪以及相互之间的交流,使我们感到英语教学中学生的习作不但要注意提高训练的力度,更要注意学生写作实践的科学
兴趣是最好的老师。瑞士著名教育家皮亚杰说过:“所有智力方面的活动都要依赖于兴趣。”这句话准确地道出了兴趣对学习的重要性。兴趣是人们力求认识某种事物或爱好某种活动
众所周知,Auslander-Reiten理论是代数表示论的理论基础之一。最近Iyama提出了极大n-正交子范畴的概念,并利用它将经典的Auslander-Reiten理论从2维推广到高维。事实上,Iyama