【摘 要】
:
The expansion of gene families implicated in cancer and other genetic diseases is an evolutionary oddity from a natural selection perspective.This expansion
【机 构】
:
InstitutCurie,France
【出 处】
:
The XXIX International Colloquium on Group-Theoretical Metho
论文部分内容阅读
The expansion of gene families implicated in cancer and other genetic diseases is an evolutionary oddity from a natural selection perspective.This expansion of "dangerous" gene families in vertebrates is correlated with other genomic properties such as their connectivity within protein complexes,gene divergence rates,gene expression levels,etc.Yet,many of these correlations are in fact mediated through the indirect effect of a third property and only provide partial insights on evolutionary origin of this expansion of "dangerous" gene families.To go beyond such simple statistical associations and quantify their direct and indirect effects on the expansion of "cancer" gene families,we have used the Mediation framework developped by Pearl.It demonstrates the central role of two rounds of whole genome duplication at the origin of vertebrates in their enhanced susceptibility to genetic disorders and cancers.These results are also supported by a simple population genetics model that rationalizes,from an evolutionary perspective,this expansion of gene families frequently implicated in genetic disorders and cancers.
其他文献
The tumor suppressor p53 lies at the hub of cellular signaling networks that are activated by various stress signals.As a nuclear transcription factor,p53 c
We shall present the explicit forms of the elementary characters for the classical groups and describe certain relations between their explicit forms and th
In view of nice properties of semi-standard tableaux of rectangular shape for type A,we introduce a notion of Kirillov-Reshetikhin tableau for type D.It is
We construct a class of twisted $Gamma$-vertex operators over even sublattice $Q$ of $mathbb Z^N$ and isometry $nu$ of $mathbb Z^N$ such that $nu(Q)=Q$
In this talk,I will introduce the family of positive principal series representations for split real quantum groups by positive self adjoint operators.This
Soibelmans theory of quantized function algebra A_q(SL_n) provides a representation theoretical scheme to construct a solution of the Zamolodchikov tetrahed
Efficient and accurate numerical methods are very crucial to tackle the strongly correlated quantum lattice systems.In this talk,I shall discuss two novel t
Let G be the orthogonal group O(V) or the symplectic group Sp(V).Brauer showed in 1937 that there is a surjective algebra homomorphism from the Brauer algeb
The existence of Amide Planes of Protein Structures has been confirmed recently by a Mathematical Programming Approach [1].The proposed cost function is the