面向中文新闻文本分类的融合网络模型

来源 :中文信息学报 | 被引量 : 0次 | 上传用户:dextersky001
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对神经网络文本分类模型随着层数的加深,在训练过程中发生梯度爆炸或消失以及学习到的词在文本中的语义信息不够全面的问题,该文提出了一种面向中文新闻文本分类的融合网络模型。该模型首先采用密集连接的双向门控循环神经网络学习文本的深层语义表示,然后将前一层学到的文本表示通过最大池化层降低特征词向量维度,同时保留其主要特征,并采用自注意力机制获取文本中更关键的特征信息,最后将所学习到的文本表示拼接后通过分类器对文本进行分类。实验结果表明:所提出的融合模型在中文新闻长文本分类数据集NLPCC2014上进行实验,其精度
其他文献
传统上神经机器翻译依赖于大规模双语平行语料,而无监督神经机器翻译的方法避免了神经机器翻译对大量双语平行语料的过度依赖,更适合低资源语言或领域。无监督神经机器翻译训
在评论情感分析的研究中,和评论相关的用户与产品信息对于提高情感分类的准确率有很大的帮助。为了能够有效地利用产品和用户信息,并构建产品和用户信息与评论之间的关联,该
近几年,神经网络因其强大的表征能力逐渐取代传统的机器学习成为自然语言处理任务的基本模型。然而经典的神经网络模型只能处理欧氏空间中的数据,自然语言处理领域中,篇章结
近年来,随着人工智能技术的发展,更多数据被利用,数据驱动的端到端闲聊机器人技术得到快速发展,受到了学术界和工业界的广泛关注。但是对于闲聊机器人的评价,现在没有标准的
神经机器翻译凭借其良好性能成为目前机器翻译的主流方法,然而,神经机器翻译编码器能否学习到充分的语义信息一直是学术上亟待探讨的问题。为了探讨该问题,该文通过利用抽象
随着环保要求日益严格,以及炼化企业污水复杂多样,炼化污水处理厂运行成本大幅度增加,节能降耗成为诸多企业内部挖潜增效的有效途径.以某炼化污水处理厂运行为实例,在确保污
捕捉客户来电意图信息,开展客户来电意图识别研究具有重要意义。现有的客户来电意图识别大都是采用人工分析方法,尚没有采用机器学习、深度学习模型识别客户来电意图的研究。
关系分类是自然语言处理领域中重要的语义处理任务,随着机器学习技术的发展,预训练模型BERT在多项自然语言处理任务中取得了大量研究成果,但在关系分类领域尚有待探索。该文
中国中文信息学会自然语言生成与智能写作专业委员会(筹)发起会议于2021年3月30日在北京举行。学会名誉理事长李生教授,副理事长兼秘书长孙乐研究员,专委会筹委会主任赵铁军
期刊
针对循环神经网络模型无法直接提取句子的双向语义特征,以及传统的词嵌入方法无法有效表示一词多义的问题,该文提出了基于ELMo和Transformer的混合模型用于情感分类。首先,该