Anti-corrosive mechanism of poly (N-ethylaniline)/sodium silicate electrochemical composites for cop

来源 :材料科学技术(英文版) | 被引量 : 0次 | 上传用户:ccysshucc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Poly (N-ethylaniline) (PNEA) composites with varying silicate content were fabricated on copper through a novel electropolymerized strategy in acidic solution.Thickness,compactness,conductivity and adhesive strength of the composite (PNEA-10Si) were optimized as silicate content reached 10 mM.Electrochemical,morphological and solution analyses were employed to evaluate the protective performance of PNEA and PNEA-10Si coatings for copper in 3.5 % NaCl solution.Results of electrochemical analyses indicated that as-prepared coatings retarded the oxygen reduction process efficiently for copper in 3.5 % NaCl solution,drained corrosion current density and elevated interfacial charge transfer resistance.Due to favorable barrier effect,compact structure and low porosity index,PNEA-10Si composite exhibited superior anti-corrosive performance,which was more tolerant than PNEA during long-time immersion.PNEA-10Si coated sample exhibited a stable topography after 144 h immersion with the minimum concentration of released ions revealing the improved protection capacity.Electronic/atomic-multiscale calculations were conducted to clarify the deposition and protection mechanism of as-prepared coatings.Outcomes of density functional theory corroborated that silicate is stabilized in the PNEA layer via electrostatic force;and immobile silicate positively contributed to the charge transfer barrier of the composite.Molecular dynamics simulations evidenced that the favorable compatibility between PNEA and silicate facilitated polymer deposition and confined in-situ ions diffusion.
其他文献
Nitrogen-doped carbon materials as promising oxygen reduction reaction (ORR) electrocatalysts attract great interest in fuel cells and metal-air batteries becau
研究了厚复层TA1/304复合板沿着爆轰波传播方向、距离起爆端不同位置处的焊接界面变化情况,通过金相分析及性能检测将复合界面的变化情况进行了整体分析,系统研究了在爆轰波传播过程中,界面的动态变化过程。结果表明:沿着爆轰波传播方向,焊接界面形态经历了无波,成波,波幅、波长增大,稳定至消失的动态变化过程。伴随着界面形态的改变,剪切强度先增加随后稳定,最终在起爆对边位置强度明显降低,剪切强度最低为230 MPa。在距起爆边300~400 mm处,界面波形态稳定,波幅比为0.22,剪切强度约为450 MPa。
Targeting of chemotherapeutics towards a tumor site by magnetic nanocarriers is considered promising in tumor-control.Magnetic nanoparticles are also considered
Additive manufacturing enables processing of functionally graded materials (FGMs) with flexible spatial design and high bonding strength.A steel-copper FGM with
Two-dimensional (2D) titanium carbide (MXene) nanosheets exhibited excellent conductivity,flexibility,high volumetric capacity,hydrophilic surface,thermal stabi
Searching for free-standing and cost-efficient hydrogen evolution reaction (HER) electrocatalysts with high efficiency and excellent durability remains a great
介绍了城市轨道交通谐振式组合道床减振系统在地铁高架线的施工工艺,并就运营后线路道床振动及噪声进行在线测试。结果表明:相对于普通道床,组合道床系统道床减振量达到18.2 dB,轨旁噪声降低5.1 dBA,桥下噪声降低8.1 dBA,桥下水平距离20 m处噪声降低2.3 dBA。组合道床系统减振降噪效果优异,施工工艺成熟完善,可在城市轨道交通特殊减振措施进行推广应用。
The conductive metal-organic frameworks (MOFs) are suggested as the ideal electrocatalysts for hydrogen evolution reaction (HER) because of the high utilization
Graphitic carbon nitride (g-C3 N4) with the merits of high visible light absorption,proper electronic band structure with high conduction band edge and variable
习近平主席在第七十五届联合国大会一般性辩论上发表重要讲话时指出,中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取20
期刊