论文部分内容阅读
协同过滤算法是一个在各领域广泛使用的启发式推荐算法,但传统协同过滤算法存在冷启动、数据稀疏性、用户分类精度低等问题.以协同过滤算法中重要的分类模型为切入点,对协同过滤算法进行改进.在选取分类算法方面,使用支持向量机算法与K最近邻算法进行模型融合,得到一个适用于协同过滤模型的分类算法,用其代替传统协同过滤算法中的分类算法.实验结果表明,改进的个性化推荐算法模型能较好解决传统协同过滤算法存在的问题,在对用户喜好的推荐精度上有明显优化作用.