具有增量学习能力的智能孤岛检测方法

来源 :电力自动化设备 | 被引量 : 0次 | 上传用户:zzdlily_4000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于机器学习的智能孤岛检测方法能有效地提高防孤岛保护的性能,但现有方法皆采用离线学习方案,对配电网因运行条件变化而导致的概念漂移现象缺乏自适应性。提出了一种具有在线增量学习能力的孤岛检测方法。首先,提出利用保护自采数据以及数据采集与监视控制(SCADA)系统采集的开关状态构成原始样本,并基于增量聚类方法进行样本筛选,实现有效样本的在线积累;然后,以各子样本集对系统最新状况的分类性能作为竞争准则,提出了一种样本集的优选方法,并利用加权支持向量机完成了增量学习。仿真结果表明,所提方法能够自主探测概念漂移的发生并进行持续的学习,有效地提高了孤岛检测的准确性和自适应性。
其他文献
提出了一种基于帝国殖民竞争算法优化支持向量机的变压器故障诊断模型。对支持向量机进行了非线性和多分类变换,构建了k-折平均分类准确率目标函数,建立了帝国殖民竞争算法优