论文部分内容阅读
本文根据城市桥梁群体的实际震害资料数据,采用粒子群算法(PSO)来优化支持向量机(SVM)参数,选择影响桥梁震害等级的8个因素作为特征输入向量,充分用2种算法的优点建立PSO—SVM的桥梁震害预测模型。通过比较PSO-SVM和SVM模型对桥梁震害的预测能力,发现PSO-SVM模型具有较高预测精度和较高的推广价值。本文的研究成果对桥梁震害等级的预测具有一定的参考价值和指导意义。