论文部分内容阅读
A large planar microphone array, which consists of 111 microphones, was successfully developed. The positions of 111 microphones in the array were determined by a random optimization procedure for the largest possible amplification and dynamic range. The beam pattern of planar array was obtained by numerical calculation. This planar array was applied to measure a two-dimensional mapping of the sound sources on landing aircraft. It is shown that important airframe noise sources can be identified. The spectra and directivity of any interested noise source can also be obtained by this measurement.
A large planar microphone array, which consists of 111 microphones, was successfully developed. The positions of 111 microphones in the array were determined by a random optimization procedure for the largest possible amplification and dynamic range. The beam pattern of planar array was obtained by numerical The planar array was applied to measure a two-dimensional mapping of the sound sources on landing aircraft. It is shown that important airframe noise sources can be identified. The spectra and directivity of any interested noise source can also be obtained by this measurement .