论文部分内容阅读
采用水热合成法,将Fe(NO3)3·9H2O、ZnCl2和AgNO3对纳米管TiO2进行掺杂,使用TEM、XRD、XPS、比表面积分析仪及UV-visDRS对掺杂后的纳米管TiO2进行表征并考察其光催化氧化去除罗丹明B的效果,从而优选最佳掺杂金属。结果表明,煅烧温度可影响纳米管TiO2锐钛矿相相对含量、比表面积及禁带宽度,进而影响其光催化活性。此外,掺杂金属离子的种类不同,纳米管TiO2的光催化活性也受到影响。500℃煅烧非掺杂纳米管TiO2的存在下,光催化氧化罗丹明B的去除率为98.72%。向纳米管TiO2中掺杂Fe3+、Zn2+及Ag+时,光催化氧化罗丹明B的效果得到提高。对以上三种掺杂金属离子而言,掺杂量为1.0%(原子百分含量)的催化剂的最佳煅烧温度为550℃。其中,Fe3+掺杂纳米管TiO2光催化活性最高,50min内光催化氧化罗丹明B的去除率可达99.0%。
The nanotubes TiO2 were doped with Fe (NO3) 3 · 9H2O, ZnCl2 and AgNO3 by hydrothermal method. The nanotubes TiO2 were doped by TEM, XRD, XPS, UV-visDRS The effect of photocatalytic oxidation to remove Rhodamine B was characterized and investigated, so that the best doping metal was preferred. The results show that the calcination temperature can affect the relative content of anatase TiO2 nanotubes, the specific surface area and the forbidden band width, thus affecting its photocatalytic activity. In addition, the different types of doping metal ions, nanotubes TiO2 photocatalytic activity is also affected. Under the condition of 500 ℃ calcined non-doped nanotubes TiO2, the removal rate of photocatalytic Rhodamine B was 98.72%. The effect of photocatalytic oxidation of rhodamine B is improved when doped with Fe3 +, Zn2 + and Ag + in the nanotube TiO2. For the above three doping metal ions, the optimal calcination temperature of the catalyst with doping amount of 1.0% (atomic percent) was 550 ℃. Among them, Fe3 + -doped nanotubes had the highest photocatalytic activity of TiO2, and the removal rate of Rhodamine B was 99.0% within 50min.