论文部分内容阅读
当前LSTMP是基于LSTM增加了Projection层,并将这个层连接到LSTM的输入,通过循环连接投影层,对高维度的信息进行降维,减小细胞单元的维度,从而减小相关参数矩阵的参数数目。但LSTMP网络结构的缺点在于Projection层的输出需要完成两个功能,既需要充当历史信息,又需要作为下一层的输入。针对以上问题,笔者提出了一种Re-dimension的方法,让网络自己选择一部分参数作为历史信息,并获得了一定程度的提升。采用该方法后,能提高语音识别率相对4-5%左右。