论文部分内容阅读
本文从 Lagrange-Euler 方程出发,导出了一种用于机器人动力学分析的新方法。这种新方法解决了用Lagrange-Euler 方法对机器人进行动力学分析时,存在计算量过大的问题。这种方法用于自由度n=6的开链机器人的动力学分析,整个计算过程大约需要1200个左右的乘法和1000个左右的加法。它的计算量比递推形式的 Lagrange-Euler方法和广义D’Alembert原理的方法等要少得多.此外,本文最后还将这种方法用于一类具有单闭链的机器人动力学分析.
Based on Lagrange-Euler equations, a new method for robot dynamics analysis is derived. This new method solves the problem of excessive computation when using Lagrange-Euler method to analyze the robot dynamics. This method is used for dynamic analysis of open-chain robots with degree of freedom n = 6. Approximately 1200 multiplications and 1000 additions are required for the entire calculation. Its computational complexity is much less than that of the Lagrangian-Euler method and the generalized D’Alembert principle in the recursive form.In addition, this method is also applied to a class of robot dynamics analysis with single closed-chain finally.