论文部分内容阅读
针对AdaBoost算法随着学习难度的增加导致分类器的分类效率下降、稳定性变差等问题,支持向量机在小样本中有特有优势;本文结合两种算法优势,基于蚁群算法对SVM的参数进行优化,改进了Adaboost_SVM级联分类算法,首先提取haar-like矩形特征通过Adaboost分类器快速排出非人脸区域;用Gabor小波变换提取人脸表情特征,再结合Adaboost_SVM级联分类器进行人脸表情识别。通过对JAFFE表情库进行试验,表情平均识别率达到94.2%,检测速度有了很大提高。