论文部分内容阅读
针对当前新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)病例个体时空轨迹描述文本高度非结构化的特点,提出了一种基于自然语言处理(natural language processing, NLP)辅助的交互式轨迹提取方法,用于提高轨迹提取的效率和质量。设计了交互式轨迹提取和质量评估流程,研究并实现了地址分割与组合算法、轨迹质量评估算法等关键技术。以黑龙江本土COVID-19聚集病例为例,通过轨迹提取效率和质量对比实验,验证了该方法的有效性和实用性。实验结果表明,与