Two Types of Diurnal Variations in Heavy Rainfall during July over Korea※

来源 :大气科学进展(英文版) | 被引量 : 0次 | 上传用户:pzchh
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
This study examined the characteristics of the diurnal variations of heavy rainfall (≥110 mm in 12 hours) in Korea and the related atmospheric circulation for July from 1980?2020. During the analysis period, two dominant pattens of diurnal variation of the heavy rainfall emerged: all-day heavy rainfall (AD) and morning only heavy rainfall (MO) types. For the AD-type, the heavy rainfall is caused by abundant moisture content in conjunction with active convection in the morning (0000?1200, LST; LST = UTC + 9) and the afternoon hours (1200?2400 LST). These systems are related to the enhanced moisture inflow and upward motion induced by the strengthening of the western North Pacific subtropical high and upper-tropospheric jet. For the MO-type, heavy rainfall occurs mostly in the morning hours; the associated atmospheric patterns are similar to the climatology. We find that the atmospheric pattern related to severe heavy rainfalls in 2020 corresponds to a typical AD-type and resembles the 1991 heavy-rainfall system in its overall synoptic/mesoscale circulations. The present results imply that extremely heavy rainfall episodes in Korea during the 2020 summer may occur again in the future associated with the recurring atmospheric phenomenon related to the heavy rainfall.
其他文献
Seasonal forecasts for Yangtze River basin rainfall in June, May–June–July (MJJ), and June–July–August (JJA) 2020 are presented, based on the Met Office GloSea5 system. The three-month forecasts are based on dynamical predictions of an East Asian Summer M
In summer 2020, extreme rainfall occurred throughout the Yangtze River basin, Huaihe River basin, and southern Yellow River basin, which are defined here as the central China (CC) region. However, only a weak central Pacific (CP) El Ni?o happened during w
A sustained heavy rainfall event occurred over the Sichuan basin in southwest China during 10–18 August 2020, showing pronounced diurnal rainfall variations with nighttime peak and afternoon minimum values, except on the first day. Results show that the w
Persistent heavy rainfall events (PHREs) over the Yangtze–Huaihe River Valley (YHRV) during 1981–2020 are classified into three types (type-A, type-B and type-C) according to pattern correlation. The characteristics of the synoptic systems for the PHREs a
借助Christoffel方程可求解出各向异性介质弹性波精确频散关系.利用近似方法进行处理,再通过傅里叶逆变换将频率波数域算子变换为时空域算子,可导出解耦的 qP波或 qS波波动方程.本文在 TTI介质弹性波精确频散关系的基础上,利用近似配方法推导了 qP波和 qSV波近似频散关系,通过傅里叶逆变换推导了 TTI介质 qP波和 qSV波解耦的波动方程.为了验证近似频散关系的有效性,利用两组模型参数对其进行数值计算,分析了相对误差在不同传播方向上的分布.随后使用有限差分方法分别对均匀、层状及复杂 TTI介质
During June and July of 2020, the Yangtze River basin suffered from extreme mei-yu rainfall and catastrophic flooding. This study explores the seasonal predictability and associated dynamical causes for this extreme Yangtze River rainfall event, based on
The summer of 2020 recorded a record-breaking flood due to excessive mei-yu rain falling over the Yangtze River Valley (YRV). Using the Lagrangian model FLEXPART, this paper investigates moisture sources and transport processes behind this extreme event.
Atmospheric rivers (ARs) are long, narrow, and transient filaments of strong horizontal water vapor transport that can lead to extreme precipitation. To investigate the relationship between ARs and mei-yu rainfall in China, the mei-yu season of 2020 in th
After its maturity, El Ni?o usually decays rapidly in the following summer and evolves into a La Ni?a pattern. However, this was not the case for the 2018/19 El Ni?o event. Based on multiple reanalysis data sets, the space-time evolution and triggering me
The middle and lower reaches of the Yangtze River in eastern China during summer 2020 suffered the strongest mei-yu since 1961. In this work, we comprehensively analyzed the mechanism of the extreme mei-yu season in 2020, with focuses on the combined effe