论文部分内容阅读
贝叶斯分类器可以归结为求词条的先验概率,目前分类器中普遍使用词条的文档出现次数和词频来计算先验概率。本文提出了一种基于权重的朴素贝叶斯分类器,不仅改进了文本中词条的先验概率计算方式,并增加了词条的权重对计算的影响。该分类器使用TFIDF模型及其改进算法实现了分类器的设计。实验结果表明,该分类器的效果比传统算法有较大的改进。