论文部分内容阅读
Poisson分布(Poisson distribution)是一种重要的离散型分布,常用于研究单位时间(面积、容积等)内,某罕见事件发生次数的分布。许多卫生检验资料如空气中细菌总数、粉尘数以及临床检验资料如血清中病原体数目等,都服从这种分布。对Poisson分布资料进行的统计推断(StatisticalInference)有参数估计(Parametric estimation)和假设检验(Test of hypothesis)两种方法[1]。
Poisson distribution is an important discrete distribution, often used to study the distribution of the number of occurrences of a rare event per unit time (area, volume, etc.). Many health inspection data, such as the total number of bacteria in the air, the amount of dust and clinical test data such as the number of pathogens in serum, are subject to this distribution. The Statistical Inference on Poisson distribution data has two methods, Parametric estimation and Test of hypothesis [1].