论文部分内容阅读
利用机器学习算法对商业活动中普遍存在的客户流失问题进行预测.借鉴了Bagging的自助采样法思想,提出了一种基于自助采样法的Stacking集成方法.首先对数据集进行多次采样并加入属性扰动,然后使用所得数据子集训练基分类器副本,基分类器决策结果由基分类器所对应的副本投票决定.最后在真实数据集中进行流失客户预测实验,结果显示,该文提出的方法在准确率、查准率和F1值3项指标上均好于所有基分类器和同结构的经典Stacking集成方法.