论文部分内容阅读
计算教学必须建立在学生认知发展水平和已有的知识经验基础之上,强调学生的数学学习活动是在教师组织、引导下的自主建构、自由生长、自我提升的过程。如教学“两位数乘两位数笔算”时,教师应将计算教学与数学应用有机地结合在一起,让学生对新旧知识产生冲突,提出质疑、突破算理。
一、以“用”引“算”
1.计算的兴趣来自于熟悉的情景。
新课标强调:“计算应使学生经历从现实生活中抽象数和简单的数量关系,在具体的情境中理解,并应用所学的知识解决问题的过程,避免将运算与应用割裂开来。”如何使“算”和“用”达到一个最佳结合点呢?教师应充分利用课本资源,把静态的情境动态化,利用课件把“妈妈带小红去书店买书,一共要付多少钱?”的情景呈现出来。学生一看到熟悉的情景,就会马上想到用24×12计算。从具体的生活问题中自然引出数的计算教学,改变枯燥的呈现形式,能极大地激发学生学习的兴趣。
2.计算的价值从情境的创设中感知。
在计算教学中,创设简单、有效的情境可以使学生从已有的生活经验出发,增加学生的感性认识,丰富学生的学习过程,更重要的是学生获得计算技能后,能立刻解决生活中的数学问题,使学生感受数学与日常生活的密切联系,感受数学在生活中的应用,真正体现新课程的思想——算用结合。
二、以“算”激“算”
心理学认为,学习迁移是指在一种情境中获得的技能、知识或形成的态度对另一种情境中习得知识、获得技能或形成态度的影响。在计算教学中,如果合理地利用正迁移,找准所教知识的“生长点”与“延伸点”,就能使学生对笔算和口算、估算有一个整体的联系。
学习“两位数乘两位数的笔算乘法”之前,学生已经学习了一位数乘多位数的口算、笔算,两位数乘整十数的口算和两位数乘两位数的估算。这样,教师就可将笔算的教学与口算、估算联系起来,先对列出的算式24×12进行估算,目的在于让学生感知实际结果的大致范围,同时也潜意识地渗透两位数乘整十数的算法。然后再放手让学生尝试根据已有的口算知识基础来计算结果。学生大致有以下三种口算方法:
A.24×10=240,24×2=48,240+48=288
B.24×2×6=288
C.24×3×4=288
个别学生可能接触过乘数是两位数的笔算,就提出了可以用笔算来计算结果。不教先做,虽然有些冒险,但是如果教师平时注重引导学生发现知识间的联系,把新的知识转化为学过的知识来解决,学生就会自然地把两位数乘两位数转化为两位数乘一位数再乘一位数(如算法B、C),也能转化成两位数乘整十数加两位数乘一位数(如算法A),甚至个别学生列出自己理解的竖式。通过对不同口算方法的交流,引出新的计算方法——笔算。虽然这样费些时间,但是每个学生根据自己对新知的理解,想到了不同的解决方法,有效地沟通了估算、口算、笔算之间的联系,把笔算教学纳入到整个计算教学体系中,很好地体现了新课标的理念,让学生感知到知识的整体性,同时也深深地体会到知识迁移的重要性。
三、以“理”促“法”
新课标指出:“学生获得知识,必须建立在自己思考的基础上,学生应用知识形成技能,离不开自己的实践;学生只有在获得知识技能的活动过程中,才能在数学思考、问题解决和情感态度方面得到发展。”理解两位数乘两位数笔算的算理并提炼出算法是本课教学的重点和难点。如果教师引领学生一步步去发现算理,就会形成“一问一答”的教学模式。学生虽然经历了理解算理的过程,但谈不上探究,思维得不到发展,更不能让课堂充满生机和活力。教师应把课堂交给学生,让他们把想法都暴露出来,对症下药,把难点一一突破。于是,可请会笔算的同学进行板演,其他同学思考他是怎么算的,看不懂的可以随时提问。
1.“2×4=8,十位上的4是怎么来的?”这是学生第一层次的问题,他们只知道从个位乘起,接下来该怎么算就迷糊了,思维停留在一位数乘多位数的基础上。教师可以让刚才笔算的同学解释这是因为第二个因数个位上的2乘第一个因数个位上的4后还要再乘十位上的2得到48,随后再请几位明白算理的学生说,这样绝大多数的学生就能明白先用第二个因数个位上的数去乘第一个因数。这是学生算法第一层面的建构,也是对笔算算理的初步理解。
2.“不对啦!48+24怎么等于288呢?”这既是难点所在,又是对笔算算理的进一步揭示。对学生而言,用第二个因数中的1乘24得24,4为什么要写在十位上呢?学生思索了一下,马上恍然大悟,纷纷回答:“这个24不是24,它是第二个因数十位上1乘24”;“24其实表示的是24个十”;“这个24就是240”。教师适时补上一个“虚写的0”,学生又开始质疑:这个0可以不写吗?他们又自我解释用十位上的1乘4得到4个十,4就直接写在十位上。教师把0擦了,学生立刻明白,其实是2×24与1个十乘24相加。通过学生的对话,他们已经把笔算的算理讲得很透彻,寓理于算,认识层层深入,新旧知识间的冲突逐步解决,从而领悟到第一步就是用第二个因数个位上的数乘第一个因数,第二步就是第二个因数十位上数乘第二个因数,所以积的末尾与十位对齐,此时学生对理解两位数乘两位数笔算的算理有了一个量的变化。这是对笔算算法第二层面的建构,也是对笔算算理的进一步理解。
3.“笔算的方法和第一种口算方法是一样的。”一位女生突然惊叫起来,“我发现笔算的方法和第一种口算方法是一样的。”这个有价值的发现是学生对两位数乘两位数算理的理解发生了质的变化。原来乘法笔算也是先算几个第一个因数的积,再算几十个第一个因数的积,最后把两次乘得的积加起来,笔算只不过把这三步计算合写在同一个算式中,笔算与口算的算理是一样的,是笔算算理与算法的融会贯通。
纵观这一内容的教学,每一个环节都围绕着新课标的“四基”目标,既重视知识技能目标的达成,更重视探究知识的过程性目标达成。给学生充分的时间,让他们尝试、探索、发现,在认知冲突中自我领悟笔算算理、提炼笔算方法,又一层层在质疑、比较中思索,透彻地理解笔算的算理,促进笔算方法的正确养成,又沟通了笔算、口算和估算三者的关系。这样寓理于算的计算教学不仅完成了“两位数乘两位数笔算”的教学目标,而且让学生对今后学习多位数笔算有了新的认识,可谓“小课堂大收获”。
◇责任编辑:徐新亮◇
一、以“用”引“算”
1.计算的兴趣来自于熟悉的情景。
新课标强调:“计算应使学生经历从现实生活中抽象数和简单的数量关系,在具体的情境中理解,并应用所学的知识解决问题的过程,避免将运算与应用割裂开来。”如何使“算”和“用”达到一个最佳结合点呢?教师应充分利用课本资源,把静态的情境动态化,利用课件把“妈妈带小红去书店买书,一共要付多少钱?”的情景呈现出来。学生一看到熟悉的情景,就会马上想到用24×12计算。从具体的生活问题中自然引出数的计算教学,改变枯燥的呈现形式,能极大地激发学生学习的兴趣。
2.计算的价值从情境的创设中感知。
在计算教学中,创设简单、有效的情境可以使学生从已有的生活经验出发,增加学生的感性认识,丰富学生的学习过程,更重要的是学生获得计算技能后,能立刻解决生活中的数学问题,使学生感受数学与日常生活的密切联系,感受数学在生活中的应用,真正体现新课程的思想——算用结合。
二、以“算”激“算”
心理学认为,学习迁移是指在一种情境中获得的技能、知识或形成的态度对另一种情境中习得知识、获得技能或形成态度的影响。在计算教学中,如果合理地利用正迁移,找准所教知识的“生长点”与“延伸点”,就能使学生对笔算和口算、估算有一个整体的联系。
学习“两位数乘两位数的笔算乘法”之前,学生已经学习了一位数乘多位数的口算、笔算,两位数乘整十数的口算和两位数乘两位数的估算。这样,教师就可将笔算的教学与口算、估算联系起来,先对列出的算式24×12进行估算,目的在于让学生感知实际结果的大致范围,同时也潜意识地渗透两位数乘整十数的算法。然后再放手让学生尝试根据已有的口算知识基础来计算结果。学生大致有以下三种口算方法:
A.24×10=240,24×2=48,240+48=288
B.24×2×6=288
C.24×3×4=288
个别学生可能接触过乘数是两位数的笔算,就提出了可以用笔算来计算结果。不教先做,虽然有些冒险,但是如果教师平时注重引导学生发现知识间的联系,把新的知识转化为学过的知识来解决,学生就会自然地把两位数乘两位数转化为两位数乘一位数再乘一位数(如算法B、C),也能转化成两位数乘整十数加两位数乘一位数(如算法A),甚至个别学生列出自己理解的竖式。通过对不同口算方法的交流,引出新的计算方法——笔算。虽然这样费些时间,但是每个学生根据自己对新知的理解,想到了不同的解决方法,有效地沟通了估算、口算、笔算之间的联系,把笔算教学纳入到整个计算教学体系中,很好地体现了新课标的理念,让学生感知到知识的整体性,同时也深深地体会到知识迁移的重要性。
三、以“理”促“法”
新课标指出:“学生获得知识,必须建立在自己思考的基础上,学生应用知识形成技能,离不开自己的实践;学生只有在获得知识技能的活动过程中,才能在数学思考、问题解决和情感态度方面得到发展。”理解两位数乘两位数笔算的算理并提炼出算法是本课教学的重点和难点。如果教师引领学生一步步去发现算理,就会形成“一问一答”的教学模式。学生虽然经历了理解算理的过程,但谈不上探究,思维得不到发展,更不能让课堂充满生机和活力。教师应把课堂交给学生,让他们把想法都暴露出来,对症下药,把难点一一突破。于是,可请会笔算的同学进行板演,其他同学思考他是怎么算的,看不懂的可以随时提问。
1.“2×4=8,十位上的4是怎么来的?”这是学生第一层次的问题,他们只知道从个位乘起,接下来该怎么算就迷糊了,思维停留在一位数乘多位数的基础上。教师可以让刚才笔算的同学解释这是因为第二个因数个位上的2乘第一个因数个位上的4后还要再乘十位上的2得到48,随后再请几位明白算理的学生说,这样绝大多数的学生就能明白先用第二个因数个位上的数去乘第一个因数。这是学生算法第一层面的建构,也是对笔算算理的初步理解。
2.“不对啦!48+24怎么等于288呢?”这既是难点所在,又是对笔算算理的进一步揭示。对学生而言,用第二个因数中的1乘24得24,4为什么要写在十位上呢?学生思索了一下,马上恍然大悟,纷纷回答:“这个24不是24,它是第二个因数十位上1乘24”;“24其实表示的是24个十”;“这个24就是240”。教师适时补上一个“虚写的0”,学生又开始质疑:这个0可以不写吗?他们又自我解释用十位上的1乘4得到4个十,4就直接写在十位上。教师把0擦了,学生立刻明白,其实是2×24与1个十乘24相加。通过学生的对话,他们已经把笔算的算理讲得很透彻,寓理于算,认识层层深入,新旧知识间的冲突逐步解决,从而领悟到第一步就是用第二个因数个位上的数乘第一个因数,第二步就是第二个因数十位上数乘第二个因数,所以积的末尾与十位对齐,此时学生对理解两位数乘两位数笔算的算理有了一个量的变化。这是对笔算算法第二层面的建构,也是对笔算算理的进一步理解。
3.“笔算的方法和第一种口算方法是一样的。”一位女生突然惊叫起来,“我发现笔算的方法和第一种口算方法是一样的。”这个有价值的发现是学生对两位数乘两位数算理的理解发生了质的变化。原来乘法笔算也是先算几个第一个因数的积,再算几十个第一个因数的积,最后把两次乘得的积加起来,笔算只不过把这三步计算合写在同一个算式中,笔算与口算的算理是一样的,是笔算算理与算法的融会贯通。
纵观这一内容的教学,每一个环节都围绕着新课标的“四基”目标,既重视知识技能目标的达成,更重视探究知识的过程性目标达成。给学生充分的时间,让他们尝试、探索、发现,在认知冲突中自我领悟笔算算理、提炼笔算方法,又一层层在质疑、比较中思索,透彻地理解笔算的算理,促进笔算方法的正确养成,又沟通了笔算、口算和估算三者的关系。这样寓理于算的计算教学不仅完成了“两位数乘两位数笔算”的教学目标,而且让学生对今后学习多位数笔算有了新的认识,可谓“小课堂大收获”。
◇责任编辑:徐新亮◇