论文部分内容阅读
设G是一个简单图,f是G的一个k-正常边染色,又满足对任意的uv∈E(G),都有C(u)≠C(v),则称f为G的一个邻强边染色,简称k-ASEC,且称χas(G)=min{k|G存在k-ASEC}为G的邻强边色数,其中C(u)={f(uv)|uv∈ E(G)}.给出了路.圈、树、完全图、完全二分图、星、扇、轮的冠的邻强边染色数.