论文部分内容阅读
Background:Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) is a kind of intracellular protein tyrosine phosphatase.Studies have revealed its roles in various disease,however,whether SHP-2 involves in renal fibrosis remains unclear.The aim of this study was to explore the roles of myeloid cells SHP-2 in renal interstitial fibrosis.Methods:Myeloid cells SHP-2 gene was conditionally knocked-out (CKO) in mice using loxP-Cre system,and renal interstitial fibrosis was induced by unilateral ureter obstruction (UUO).The total collagen deposition in the renal interstitium was assessed using picrosirius red stain.F4/80 immunostaing was used to evaluate macrophage infiltration in renal tubular interstitium.Quantitative real-time polymerase chain reaction and enzyme linked immunosorbent assay were used to analyze the production of cytokines in the kidney.Transferase-mediated dUTP nick-end labeling stain was used to assess the apoptotic renal tubular epithelial cells.Results:Src homology 2 domain-containing protein tyrosine phosphatase-2 gene CKO in myeloid cells significantly reduced collagen deposition in the renal interstitium after UUO.Macrophage infiltration was evidently decreased in renal tubular interstitium of SHP-2 CKO mice.Meanwhile,the production of pro-inflammatory cytokines was significantly suppressed in SHP-2 CKO mice.However,no significant difference was observed in the number of apoptotic renal tubular epithelial cells between wild-type and SHP-2 CKO mice.Conclusions:Our observations suggested that SHP-2 in myeloid cells plays a pivotal role in the pathogenesis of renal fibrosis,and that silencing of SHP-2 gene in myeloid cells may protect renal from inflammatory damage and prevent renal fibrosis after renal injury.