Progressive framework for deep neural networks: from linear to non-linear

来源 :The Journal of China Universities of Posts and Telecommunica | 被引量 : 0次 | 上传用户:linjr82
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
We propose a novel progressive framework to optimize deep neural networks. The idea is to try to combine the stability of linear methods and the ability of learning complex and abstract internal representations of deep learning methods. We insert a linear loss layer between the input layer and the first hidden non-linear layer of a traditional deep model. The loss objective for optimization is a weighted sum of linear loss of the added new layer and non-linear loss of the last output layer. We modify the model structure of deep canonical correlation analysis(DCCA), i.e., adding a third semantic view to regularize text and image pairs and embedding the structure into our framework, for cross-modal retrieval tasks such as text-to-image search and image-to-text search. The experimental results show the performance of the modified model is better than similar state-of-art approaches on a dataset of National University of Singapore(NUS-WIDE). To validate the generalization ability of our framework, we apply our framework to Rank Net, a ranking model optimized by stochastic gradient descent. Our method outperforms Rank Net and converges more quickly, which indicates our progressive framework could provide a better and faster solution for deep neural networks. We propose a novel progressive framework to optimize deep neural networks. The idea is to try to combine the stability of linear methods and the ability of learning complex and abstract internal representations of deep learning methods. We insert a linear loss layer between the input layer and the first hidden non-linear layer of a traditional deep model. The loss objective for optimization is a weighted sum of linear loss of the added new layer and non-linear loss of the last output layer. We modify the model structure of deep canonical correlation analysis (DCCA), ie, adding a third semantic view to regularize text and image pairs and embedding the structure into our framework, for cross-modal retrieval tasks such as text-to-image search and image-to-text search. results show the performance of the modified model is better than similar state-of-art approaches on a dataset of National University of Singapore (NUS-WIDE). To validate the generalization ability of our fr amework, we apply our framework to Rank Net, a ranking model optimized by stochastic gradient descent. Our method outperforms Rank Net and converges more quickly, which indicates our progressive framework could provide a better and faster solution for deep neural networks.
其他文献
为了预测气泡雾化下游场液滴的速度,借助修正的局部均匀流动模型(locally homogenous flow,LHF),建立了针对气液两相雾化下游场液滴速度的预测模型,并且与采用激光多普勒粒度
期刊
纳西族是中华民族大家庭中一个有着自己独特文化个性的民族,主要聚居在川、滇、藏三省毗连地区。由于其特殊的自然地理环境、民族迁徙经历和原始宗教的共同影响,使其形成了独具
采用电阻应变仪和梁式电阻应变传感器,试验研究了气液两相流横向冲刷三排错列排列管束时的阻力和脉动阻力系数.测试管采用φ30 mm的有机玻璃圆柱;气液两相流的流型为细泡状流;
赵鼎字元镇,号得全居士,解州闻喜人。绍兴间,曾两度拜相,认为为政当以固本为先,根本固而后敌可图,因而主张养民力、稳根基。为政期间,运筹帷幄,力挽狂澜,为巩固南宋根基贡献甚大。赵鼎
根据《水利部水土保持司关于验收全国第二批水土保持监督管理能力建设县的通知》(水保监督函〔2014〕4号)和《关于全国第二批水土保持监督管理能力建设县复验分组的通知》(水保
2008年,我国南方地区出现了持续大范围严重低温雨雪冰冻灾害,对电网造成极大破坏.当时,大面积停电对国民经济及人民生活都造成了严重影响.rn冰灾初期,电力设备覆冰相对较轻,
立足于小美术课堂教学现状,主要分析了在教学过程中,激发学生创新能力,促进课堂教学质量不断提升的可靠策略。 Based on the status quo of small art classroom teaching,
期刊
循环流化床在高氧浓度燃烧时,褐煤的热破碎特性和燃烧特性改变,为优化褐煤在高氧气浓度下的燃烧,在0.15 MW循环流化床试验系统上研究一次风氧气浓度和二次风流量比例对燃烧稳
2014年8月6日,长江防总会商研究确定了从丹江口水库向平顶山市应急调水实施方案,并正式下发通知实施从丹江口水库向平顶山市应急调水,应急调水工作正式启动。要求各有关单位按照