【摘 要】
:
应用光滑粒子动力学(SPH)方法建立罐式贮箱模型,模拟在横摇激励下贮箱内的液体晃动。分析贮箱拓扑结构、防波板数目及防波板高度对贮箱壁面冲击压力及结构稳定性的影响。模拟结果表明:SPH方法可以很好地模拟液体晃荡强非线性特征,改进的梯形截面的罐式贮箱可以有效抑制液体晃动;在椭圆形贮箱中合理布置防波板可有效降低液体质心,减小倾覆力矩,更有利于罐式贮箱保持稳定。
【机 构】
:
重庆通用航空产业集团有限公司,重庆理工大学机械工程学院
【基金项目】
:
国家自然科学基金青年科学基金项目(11602045),重庆市技术创新与应用发展重大主题专项(cstc2019jscx-zdztzx0020,cstc2019jscx-zdztzx0028)。
论文部分内容阅读
应用光滑粒子动力学(SPH)方法建立罐式贮箱模型,模拟在横摇激励下贮箱内的液体晃动。分析贮箱拓扑结构、防波板数目及防波板高度对贮箱壁面冲击压力及结构稳定性的影响。模拟结果表明:SPH方法可以很好地模拟液体晃荡强非线性特征,改进的梯形截面的罐式贮箱可以有效抑制液体晃动;在椭圆形贮箱中合理布置防波板可有效降低液体质心,减小倾覆力矩,更有利于罐式贮箱保持稳定。
其他文献
针对三轮全向移动机器人自主避障行进问题,提出一种以STM32F1处理器为核心的视觉避障控制系统.分析三轮全向移动机器人运动模型,设计避障机器人的硬件控制系统.利用OpenMV OV
针对一类不确定时滞系统,考虑系统状态的不确定性和控制器的脆弱性,在系统的状态不能直接测量得到的情况下,设计基于状态观测器的不确定时滞系统的鲁棒非脆弱H_∞控制器。将其应用于机械手伺服系统轨迹跟踪控制仿真,通过对机械手角度、角速度等状态信息的观测跟踪,验证了状态观测器的有效性和鲁棒非脆弱H_∞控制的可行性。
针对现有汽摩装配工艺中所用机械手存在抓取方式单一及手指结构复杂的问题,设计一种两组连杆并行传动的三自由度机械手指,运动学分析结果证明该手指具有平滑的运动轨迹。搭建由3个该机械手指构成的机械手并进行目标抓取实验。实验结果表明:由该机械手指构成的机械手能够对多种形状目标实现稳定抓取,且具有较好的柔顺性与灵巧性,为汽摩装配工艺提供了参考。
现有船舱环境参数监控系统由于网络环境的限制,存在着系统响应时间长、监控数值误差大的缺陷.为此,基于局域网设计船舱环境参数监控系统.系统硬件单元包含数字温湿度传感器单
船舶群体行为监控是水域监控的重点,也是保障船舶安全航行的重要手段.在船舶航行监控中,经常会发现船舶异常行为,而异常行为多与海上违法事件、海事事故有关,直接威胁到人员
大型串联机械臂液压控制系统存在变负载及外干扰问题,机械臂不同工作姿态的等效质量会造成液压缸系统固有频率变化,影响系统动态特性,为此提出一种基于线性扩张状态观测器的滑动模态控制策略(LESOSMC)。以破拆机器人机械臂为研究对象,仿真试验结果表明:LESOSMC在机械臂处于不同姿态时,保持了很好的动态特性和稳态精度,对周期正弦信号也具有良好的跟踪性能。LESOSMC在机械臂变负载控制中具有良好的鲁棒性,满足重载液压机械臂关节位置控制的要求,为解决液压重载机械臂关节液压缸的位置控制提供了有效的工程方法。
为提高3D打印扫描填充的效率与零件成型质量,搭建基于SOPC的3D打印机驱动系统,提出基于速度正交分解的3D打印扫描路径优化算法。该系统能够支持各运动轴的同步驱动。该算法结合了运动的正交分解原理以及同步驱动方式的优势,将扫描路径中的空行程以及直线拐角替换为圆弧曲线,使各轴速度能均匀变化,打印头以最大可行速度按照规划的路径作匀速运动,扫描填充整个截面。实验结果表明:与原算法相比,新算法能有效减少扫描时间10%以上,尤其在打印扫描结构复杂且面积比较小的模型时扫描时间最高可减少55%以上。
为了提高舰船信息融合系统网络安全态势预测性能,提出了基于AIS的舰船信息融合系统网络安全态势预测.在迭代舰船信息融合系统网络安全态势粒子的过程中,寻找到粒子群的最佳位
为降低仓储物流的人工成本,提高物流企业的自动化水平及生产效率,以西门子SMART 200 PLC作为核心控制器,利用磁条进行路径导引,采用超声波、光电传感器、防撞条3种传感器构成机器人的三级安全防护系统。以昆仑通态TPC7062KX嵌入式一体化触摸屏作为人机交互界面。通过设计控制电路、编写运动控制程序、编辑人机交互界面等完成移动机器人控制系统的开发。该系统能够实现移动机器人前进、后退、直行、转弯、调速、停车、自动运行、手动运行等功能,并且运行平稳可靠、操作简便、安全性强,能够很好地完成物料运送任务。
基于正交试验,采用Al2O3-TiCN涂层硬质合金刀具干切削N型HT250灰铸铁,研究切削速度、进给量和背吃刀量对表面粗糙度的影响及机制,为N型HT250的切削提供理论依据。结果表明:Al2O3-TiCN涂层硬质合金刀具切削N型HT250的表面粗糙度优于普通HT250,尤其在低切削速度(v_c=100 m/min)的情况下,N型HT250表面粗糙度更具优异性;对N型HT250表面粗糙度影响最显著的因素是进给量,其次是背