数学学习的一种“懒法”

来源 :数理化学习·高一二版 | 被引量 : 0次 | 上传用户:tourena
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  
  一题多解是很多教师和学生追求的境界,把一道题用多种方法解出来感觉很有成就感,其实用一种方法解出多道题目,也是一种智慧,一法解多题对学习基础相对薄弱的学生来说不失为学习的上策,下面我以人教A版必修二第四章圆与方程中一类求圆的方程的题目为例介绍我的做法,和大家分享.教材第119页例2“△ABC的三个顶点的坐标分别是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程”,因为不在同一直线上的三个点确定一个圆,圆的标准方程中有三个参变量a,b,r,所以课本使用的是“待定系数法”(代数法的一种)解的此题,思路简单易于理解只是计算稍微繁琐,例2解决之后学生马上意识到遇到求过不在同一直线上的三点的圆的方程时就用这种“代数法”.第120页例3“已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线l:x-y+1=0上,求圆心为C的圆的标准方程”,课本使用的是“几何法”解的此题,先画图,结合图形分析,圆心除了在直线l上,还在线段AB的垂直平分线上,于是需要求线段AB的垂直平分线的方程,根据题目条件选择点斜式来求线段AB的垂直平分线的方程,于是需要先求点(线段AB的中点)和斜率(直线AB的斜率的负倒数).解由直线l的方程和线段AB的垂直平分线的方程组成的方程组求出圆心C的坐标,利用两点间的距离公式求出半径r的值,代入标准方程的一般形式中得出所求圆的方程.整个解的过程用到数形结合思想、方程思想,还用到了中点坐标公式、斜率公式、两点间的距离公式和直线的点斜式方程,思维量和计算量都很大,绝非基础一般学生所能及,如果教师硬把这种方法灌输给学生结果往往是事倍功半.结合学生的实际,既然例2中的“代数法”学生易接受,我们何不继续使用此法解决例3呢?这不正符合最近发展区理论的要求吗?
  
  针对例3我给出学生这样的解法:
  设圆C的标准方程是(x-a)2+(y-b)2=r2,其中圆心坐标为(a,b),半径为r,根据题意得
  
   (1-a)2+(1-b)2=r2,
  
   (2-a)2+(-2-b)2=r2
  
  a-b+1=0
  
  
  解此方程组,得a=-3,b=-2,r2=25.
  
  所以,圆C的标准方程为(x+3)2+(y+2)2=25.
  
  我们分析一下例3,已知圆上两点和圆心所在直线方程求圆的方程,与“几何法”相比这种解法从解题的篇幅上看大大减少,学生从心理上更容易战胜自己,也更容易培养学生的自信心(要知道很多学生就是因为自信心缺失才对数学学习失去兴趣的).把例2和例3已知条件比较一下发现,它们都有一个共同特点:已知圆上两点.由此分析,可知已知圆上两点和另外一个条件,就可用“代数法”求圆的方程,当然就这一道题可能还不足以让学生对这种解法产生自豪感.接着,我从课本上又找到几个类似的题目,比如课本第124页A组第3题 已知圆C的圆心在直线l:x-2y-1=0上,并且经过原点和A(2,1),求圆C的标准方程.
  
  
  
   可根据题意列出方程组
  
  
  (0-a)2+(0-b)2=r2
  
   (2-a)2+(1-b)2=r2
  a-2b-1=0
  
  
  解此方程组,得a=6/5,b=1/10,r2=29/20.
  
  
  所以,圆C的标准方程为(x-6/5)2+(y-1/10)2=29/20.
  
  
  第4题,圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),求圆C的方程.
  
  
  可根据题意列出方程组
  
  
  
  (-1-a)2+(1-b)2=r2
  
  (1-a)2+(3-b)2=r2 
  b=0,
   解此方程组,得a=2,b=0.r2=10.
  
  
  所以,圆C的标准方程为(x-2)2+y2=10. 
  
  第144页复习参考题A组第2题,求圆心在直线3x+y-5=0上,并且经过原点和(3,-1)的圆的方程.
  
  
  可根据题意列出方程组
  
  
  (0-a)2+(0-b)2=r2
  
   (3-a)2+(-1-b)2=r2
  
  3a+b-5=0
  ,解此方程组,得a=5/3,b=0,r2=25/9.
  
  所以,圆C的标准方程为(x-5/3)2+y2=25/9.
  
  第5题,求圆心在直线3x+2y=0上,并且与x轴的交点分别为(-2,0),(6,0)的圆的方程.
  
  
  可根据题意列出方程组
  
  (-2-a)2+(0-b)2=r2 
  
  (6-a)2+(0-b)2=r2
  
  3a+2b=0
  ,
  解此方程组,得a=5,b=-15/2,r2=421/4.
  
  
  所以,圆C的标准方程为(x-5)2+(y+15/2)2=421/4.
  
  从课本中找到这么多题目都用此法解出来,学生感到非常震撼,自信心更足了,他们感到数学是自己能驾驭得了的学科,没什么可怕的.更可喜的是,很多同学受到启发,自己开始编起题来,我摘取其中两例:(1)已知一圆经过点A(2,-3)和B(-2,-5),且圆心C在直线l:x-2y-3=0上,求此圆的方程.(2)已知直线l1:x+y-2=0与直线l2:2x-y-4=0交于点A,圆C的圆心在直线l1上,且点A和点B(-1,1)在圆上,求此圆的方程.读者如果有兴趣的话,可以试着解答出来,也欢迎大家提供更多利用此法可解决的有价值的题目.
其他文献
1.肥害死苗 旱地一般因持水量远远少于水田,故易造成秧苗肥害。一是苗床施用未充分腐熟的农家肥,因发酵发热和氨气造成死苗。二是肥料与土壤翻拌不匀,肥料未均匀散开,没有与
在社会主义市场经济高速发展的同时,电视新闻媒体也在不断的成长,由于人民群众的文化需求已逐渐转型,因此在当今融媒体时代的大环境下如何培育电视新闻编辑的创作能力和创新
摘要:在物理教材中有很多贴近学生生活实际的实验,这些实验如果分组来做效果更好.但实验室配备的实验材料是远远不够的,很多老师也尝试从生活中寻找新的探究材料,并收到了一定的效果.但是大多数教师却忽视了课桌边随手可得的物品.本文针对就地取材,倡导开发课桌边的物理教学资源.   关键词:就地取材;教学资源;生活;小组合作;创新   《物理课程标准》强调课程实施的实践性和小组合作的基本理念,这就必然要求我们
星期六的早晨,我从睡梦中醒来,第一眼就看见了摆在床头的一个礼盒,那是妈妈送我的生日礼物——一台显微镜。  看到这台显微镜,我想起了上学期的一堂科学课,老师对充满好奇的我们说:“一滴水中有成千上万只草履虫,只有显微镜才能看清处在小世界里的它们。小世界非常奇妙,对于我们人类更是不可缺少。”但在这堂科学课上,老师并没有让我们碰讲台上那台显微镜。他说要到六年级的时候才能带着我们去探索那个奇妙的小世界。这不
期刊
随着我国信息技术的不断发展,信息传播技术也得到了快速的发展,传播的方式和类型也越来越多.而电视传媒作为我国传媒方式中的主要传播方式之一,在新型媒体的冲击下电视新闻行
1998年美国普利策奖评选结果如下:《纽约时报》获普利策国际报道奖、犯罪报道奖和书评奖。《纽约时报》此次共获三项普利策奖,《洛杉矶时报》获得两项。普利策新闻奖项是全
通过对韩国语能力考试(TOPIK)题型、难度与时间分配的分析,根据中高级考试题型的变化,作者根据考场经历给出了相应的备考建议。 Through the analysis of TOPIK question ty
目的:探讨APR-246/PRIMA-1 MET对人结膜鳞状上皮化生(squamousmetaplasia,SM)的影响及研究其相关作用机制。  方法:结膜组织以不同浓度的APR-246/PRIMA-1 MET(0μM,3μM,15μM)
创作谈:  小时候,奶奶为了哄我快点睡觉,总是用“妖怪来了”“白骨精来了”恐吓我,有时候想不出什么吓人的新妖怪,甚至会喊“猪八戒来了”。虽然现在想不通猪八戒有什么好怕的,但是当时一听到这些妖怪的名字,眼前就会浮现出各种可怕景象,吓得赶紧用被子蒙上头,乖乖地一动不动,怕被妖怪发现,并希望自己马上睡着,好从恐惧中解脱。  小孩子的想象力尤其惊人,童年永远伴随着各式各样的幻想。对黑暗的恐惧并非莫名其妙,
新闻技术创新的历程及现状新闻技术创新在某种意义上说就是不断采用新技术对新闻信息进行采集、处理、传输、存储、检索、印刷的过程。我国报业电脑和网络技术的应用,是随着