论文部分内容阅读
A regressive correction method is presented with the primary goal of improving ENSO simulation in regional coupled GCM. It focuses on the correction of ocean-atmosphere exchanged fluxes. On the basis of numerical experiments and analysis, the method can be described as follows: first, driving the ocean model with heat and momentum flux computed from a long-term observation data set; the pro-duced SST is then applied to force the AGCM as its boundary condition; after that the AGCM’s simula-tion and the corresponding observation can be correlated by a linear regressive formula. Thus the re-gressive correction coefficients for the simulation with spatial and temporal variation could be obtained by linear fitting. Finally the coefficients are applied to redressing the variables used for the calculation of the exchanged air-sea flux in the coupled model when it starts integration. This method together with the anomaly coupling method is tested in a regional coupled model, which is composed of a global grid-point atmospheric general circulation model and a high-resolution tropical Pacific Ocean model. The comparison of the results shows that it is superior to the anomaly coupling both in reducing the coupled model ‘climate drift’ and in improving the ENSO simulation in the tropical Pacific Ocean.
A focus on the correction of ocean-atmosphere exchanged fluxes. On the basis of numerical experiments and analysis, the method can be described as follows: first, driving the ocean model with heat and momentum flux computed from a long-term observation data set; the pro-duced SST is then applied to force the AGCM as its boundary condition; after that the AGCM’s simula tion and the corresponding observations can be correlated The re-gressive correction coefficients for the simulation with spatial and temporal variation could be obtained by linear fitting. Finally the coefficients are obtained to redressing the variables used for the calculation of the exchanged air-sea flux in the coupled model when it starts integration. This method together with the anomaly coupling method is tested in a regional coupled model, which is compose The comparison of the results shows that it is superior to the anomaly coupling both in reducing the coupled model ’climate drift’ and in improving the ENSO simulation in the tropical Pacific Ocean.