论文部分内容阅读
[目的]构建我国芒果主要栽培品种的AFLP分子标记体系。[方法]供试31个芒果品种为:Banganapalli、台农1号、桂热10号、Carabao、NangKlang Wun、泰国506、紫花、Keitt、粤西1号、斯里兰卡811、龙井大芒、红象牙、小菲、泰国504、Spooner、R2E2、串芒、鹦鹉芒、Irwin、金煌、Kent、海豹、Haden、Dashehari、Neelum、桂香、Ono、白象牙、Bambaroo、Macheso、Zill。以粤西1号芒果幼嫩叶片为材料探索提取高质量DNA的方法,为了获得更高质量和数量的基因组DNA,对曾杰的方法进行了下列改良:A、用2%的CTAB提取液,其他不变;B、用3%的CTAB提取液,但在提取后只用氯仿异戊醇提取2次;C、用3%的CTAB提取液,但在提取后用氯仿异戊醇提取1次;D、用3%的CTAB提取液,但在提取后用酚氯仿异戊醇提取1次。用供试品种中的台农1号、Carabao、Keitt、Kent对64对引物组合进行筛选,其中8个EcoRI引物分别是E-AAC、E-AAG、E-ACA、E-ACT、E-ACC、E-ACG、E-AGC、E-AGG,8个MseI引物分别是M-CAA、M-CAC、M-CAG、M-CAT、M-CTA、M-CTC、M-CTG、M-CTT。利用AFLP分子标记在DNA水平上对芒果进行遗传多样性研究。[结果]4种方法提取的DNA较完整,均可得到明亮清晰的主带。且综合比较,用B方法(即采用较高浓度的提取液,提取后用氯仿异戊醇提取2次)可获得高质量、高纯度DNA,可用于芒果AFLP标记分析。供试64对引物组合中适用于芒果种质资源AFLP分析的引物组合共14对,分别是E-ACC/M-CAC、E-AAC/M-CAT、E-AAG/M-CAC、E-AAG/M-CAT、E-ACA/M-CAC、E-ACA/M-CAG、E-ACA/M-CAT、E-ACA/M-CTA、E-ACT/M-CAC、E-ACC/M-CTC、E-ACC/M-CTG、E-AGC/M-CAG、E-AGC/M-CTA、E-AGC/M-CTC。这14对引物组合在31份芒果种质中共扩增出1761条带,其中多样性带比例为97%。平均每对引物产生125.8条带和121.6条多样性带。14对引物均可将上述31个品种完全区别开来,其中E-ACA/M-CAT和E-AGC/M-CTC引物组合多态性最大,达100%,可用于芒果品种指纹图谱构建。[结论]利用AFLP可以高效检测芒果种质资源分子标记多样性。
[Objective] The research aimed to construct the AFLP molecular marker system of main mango cultivars in China. [Method] The 31 mango cultivars tested were Banganapalli, Tainong 1, Guiwen 10, Carabao, NangKlang Wun, Thailand 506, Ziziphus, Keitt, No.1 in western Guangdong, 811 in Sri Lanka, Haunted Dashehari, Neelum, Cinnamon, Ono, White Ivory, Bambaroo, Macheso, Zill. In order to obtain higher quality and quantity of genomic DNA, the method of extracting high quality DNA from young leaves of No.1 West Jiangxi mango was explored as follows: A. using 2% CTAB extract, Other unchanged; B, with 3% CTAB extract, but after extraction only with chloroform isoamyl alcohol extraction 2; C, with 3% CTAB extract, but after extraction with chloroform isoamyl alcohol extraction 1 ; D, with 3% CTAB extract, but after extraction with phenol chloroform isoamyl alcohol extraction 1 time. Sixty-four primer combinations were screened by Taonong 1, Carabao, Keitt, Kent, among which 8 EcoRI primers were E-AAC, E-AAG, E-ACA, E-ACT and E-ACC M-CAC, M-CTA, M-CTC, M-CTG, M-CTG and M- . Using AFLP molecular markers to study the genetic diversity of mango at DNA level. [Result] The DNA extracted by the four methods was more complete, and the bright and clear main band could be obtained. And comprehensive comparison, using the B method (ie, the higher the concentration of the extract, extracted with chloroform isoamyl alcohol extracted twice) can be obtained high quality, high purity DNA, can be used for AFLP marker analysis of mango. A total of 14 pairs of primer combinations for AFLP analysis of mango germplasm resources were selected for 64 pairs of primer combinations, which were E-ACC / M-CAC, E-AAC / M-CAT, E-ACA / M-CTA, E-ACA / M-CAC, E-ACA / M-CTC, E-ACC / M-CTG, E-AGC / M-CAG, E-AGC / M-CTA, E-AGC / M- CTC. A total of 1761 bands were amplified from 31 mango germplasms, of which the diversity bands were 97%. An average of 125.8 bands and 121.6 bands of diversity were generated for each pair of primers. All of the 14 pairs of primers could completely distinguish the above 31 varieties. The primer combinations of E-ACA / M-CAT and E-AGC / M-CTC had the largest polymorphism of 100% and could be used to construct the fingerprinting of mango cultivars. [Conclusion] The AFLP could effectively detect the molecular marker diversity of mango germplasm resources.