论文部分内容阅读
采煤机煤岩界面识别技术是实现采煤工作面自动化的关键技术之一。利用自组织竞争神经网络对采煤机煤岩界面模式识别进行仿真分析,结果表明,自组织竞争神经网络能对输入向量模式进行正确分类,并能很好地解决采煤机煤岩界面模式识别问题,从而为采煤机煤岩模式识别器的改进提供了技术参考。
Shearer coal-rock interface identification technology is one of the key technologies to realize coal mining face automation. The results show that the self-organizing competitive neural network can correctly classify the input vector model and can well solve the coal-rock interface pattern recognition Problems, and thus provide a technical reference for the improvement of the coal and rock coal pattern recognizer.