Three-dimensional mesoscale eddy identification and tracking algorithm based on pressure anomalies

来源 :海洋湖沼学报(英文版) | 被引量 : 0次 | 上传用户:mailtohanfeng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The Kuroshio Extension (KE) is one of the most eddy-energetic regions in the global ocean.However,most mesoscale eddy studies in the region are focused on surface eddies and the structure and characteristics of three-dimensional (3-D) eddies require additional research.In this study,we proposed a 3-D eddy identification and tracking algorithm based on pressure anomalies,similar to sea level anomalies(SLAs) for surface eddy identification.We applied this scheme to a 5-year (2008-2012) high-resolution numerical product to develop a 3-D eddy dataset in the KE.The reliability of the numerical product was verified by the 5-year temperature/salinity hydrological characteristics and surface eddy distribution.According to the 3-D eddy tracking dataset,the number of eddies decreased dramatically as the eddy existence-time increased and more anticyclonic eddies (AEs) had an existence-time longer than 1 week than cyclonic eddies (CEs).We presented daily variations in the 3-D structure of two 3-D eddy-tracking trajectories that exhibit a certain jump in depth and a shift toward the west and equator.In addition to the bowl,lens,and cone eddies that have been discovered by previous researchers,we found that there is a cylindrical eddy,and its eddy radii are almost consistent across all layers.CEs cause significant negative temperature anomalies,“negative-positive” salinity anomalies,and sinking current fields in the KE region,while AEs cause positive temperature anomalies,“positive-negative” salinity anomalies,and upward current fields.The four types of eddies have different effects on the temperature/salinity anomalies and current field distribution which are related to their structure.
其他文献
分析大型浅水湖泊藻类模型参数敏感性时空特征,可以提高模型率定效率和模拟精度,还可通过模型参数时空敏感性认识藻类生理特点的时空变化.基于环境流体动力学模型(Environmental Fluid Dynamic Code,EFDC),构建滇池藻类模型,选取13个藻类模型参数对计算网格进行参数敏感性分析,并基于K-means聚类法对网格聚类,分析参数在4个时期的空间敏感性特征及其时间差异性.结果表明:(1)1月份参数敏感性在空间上被聚为2类,呈现南北分布,其差异主要由藻类最大生长速率(PMc)及低温限制参数(
声音通讯是蛙类最主要的通讯方式;但在环境噪声等压力的驱动下,一些蛙类进化出了视觉、化学和多模等通讯方式.噪声在影响信号产生、传递以及接收和处理的同时,也促进了蛙类性信号的复杂性进化.综述了噪声对蛙类通讯行为的影响以及蛙类的适应策略.(1)噪声对蛙类通讯行为的影响:噪声不仅会遮蔽声音信号,阻碍个体对特定信号的追踪与识别,还会造成交叉感官干扰,影响大脑处理视觉信息和多模信息;(2)蛙类应对噪声干扰的适应策略:蛙类通过调整空间位置,确保鸣声与噪声在空间上分离;通过调整时域、频域和振幅等鸣声特征,获得较高信噪比;
锤头型适体酶目前已广泛用于基因表达调控,为了维持锤头型核酶高效自剪切的Loop Ⅰ和Loop Ⅱ之间的三级结构互作,现有的锤头型适体酶都是基于其stem Ⅲ或stem Ⅰ发展而来.为增加锤头型适体酶的多样性和通用性,探索基于stem Ⅱ的锤头型适体酶,通过理性设计基于stem Ⅱ的锤头型适体酶的链接体,基于毒蛋白基因ibsC报告体系,结合宿主的生长推测锤头型适体酶响应小分子调控的情况.设计了10种不同长度、不同碱基互补配对程度的链接体.其中7种链接体对应的锤头型适体酶无法发生自剪切;2种可以发生自剪切,但
The multimode fiber[MMF]has great potential to transmit high-resolution images with less invasive methods in endoscopy due to its large number of spatial modes and small core diameter.However,spatial modes crosstalk will inevitably occur in MMFs,which mak
微塑料是直径<5 mm的塑料物质,是环境中广泛分布的持久性污染物,对人类和其他生物的健康造成威胁.综述微塑料的危害、污染现状及组成来源、在食品和化工产品中的赋存现状,并着重探讨化工产品及环境中微塑料的防控.微塑料对生物体具有直接危害,同时在环境中释放塑料添加剂,并吸附环境中的其他污染物形成复合污染.微塑料在水、大气及土壤中普遍存在,在海洋、河流及大气中的迁移作用较强.微塑料按照来源可分为初生微塑料和次生微塑料.化工产品是初生微塑料的重要来源,根据具体情况可以对其含有的微塑料采用禁用、使用替代物质、调整添加
We propose and demonstrate a sensitive vector twist sensor based on a small period long period fiber grating[SP-LPFG]fabricated with a femtosecond[fs]laser.The fabricated SP-LPFG is compact in size[2.8 mm]and shows strong polarization dependent peaks in i
Magnetotactic bacteria (MTB) are a group ofprokaryotes having the ability to orient and swim along geomagnetic field lines because they contain intracellular magnetosomes that are synthesized through a biomineralization process.Magnetosomes have recently
Magnetotactic bacteria are capable of biosynthesizing magnetic nanoparticles,also called magnetosomes,and swimming along magnetic field lines.The abilities endow the whole cells of magnetotactic bacteria with such applications as targeted therapy and mani
Magnetotactic bacteria (MTB) synthesize intracellular magnetic organelles,magnetosomes,which consist of magnetic crystals that are enveloped in a membrane.Magnetosomes are organized into a chain(s) and confer on cells a magnetic dipolar moment.This magnet
Magnetotactic bacteria (MTB) display magnetotaxis ability because of biomineralization of intracellular nanometer-sized,membrane-bound organelles termed magnetosomes.Despite having been discovered more than halfa century,only a few representatives of MTB