多尺度特征融合的安检图像危险品检测

来源 :激光与光电子学进展 | 被引量 : 0次 | 上传用户:jiebaidexue
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
现有的目标检测算法检测X光安检图像中较小尺寸的危险品精度较低,为此提出一种多尺度特征融合检测网络,即MFFNet(Multi-scale Feature Fusion Network),其以SSD检测模型为基础并采用更深的特征提取网络,即ResNet-101。通过跳跃连接的方式将网络的高层语义丰富特征与低层边缘细节特征进行融合,为小尺度危险品的检测添加上下文信息,可以有效提升对小尺度目标的识别与定位精度。将融合得到的新特征层与SSD扩展卷积层一起送入检测。实验结果表明,MFFNet能够使X光安检图像
其他文献
针对网孔织物图像的对比度低和噪声点多而导致分割结果中存在网孔连在一起和残缺等问题,提出一种基于区域灰度极小值的分割算法以期提高网孔的分割精度。首先利用高斯金字塔缩放和直方图均衡化算法处理图像以增强图像的纹理轮廓和明暗对比度。然后采用一种基于区域灰度极小值的分割算法以解决仅仅依靠灰度值大小而无法正确分割网孔的问题。最后采用一种多图像融合算法以解决基于局部灰度极小值的分割算法中阈值选择困难的问题。选择
针对使用点光源的激光干涉仪在测量中容易出现相干噪声的问题,阐述了环形光源抑制相干噪声的原理,分析了环形光源半径及厚度与条纹可见度之间的关系,提出一种基于环形透镜产