论文部分内容阅读
为了提高杂波环境下目标跟踪的正确关联率和实时性,本文提出一种基于最大熵直觉模糊核聚类的目标融合跟踪算法。先通过密度函数法确定初始聚类中心,再通过加入核函数和放松对隶属度的限制,并且通过样本加权给离群点和样本点不同的权值,从而可以减少离群点和噪声点的干扰,最后通过直觉指数引入直觉模糊集,得到改进后隶属度矩阵,以隶属度矩阵作为关联概率进行目标与观测的关联,并用卡尔曼滤波进行目标模型的更新,提高目标跟踪的正确关联率和实时性。实验表明,本文算法相对传统的模糊C均值聚类算法可以提高目标正确关联率3%左右,并且