论文部分内容阅读
随着卫星遥感技术的不断发展,基于内容的遥感图像检索技术越来越受到关注。目前该方向的研究主要集中在对遥感图像中不同特征的提取和融合方面,这些方法普遍忽略了这样一个事实:对于不同类型的检索目标,特征应该是不同的。另外,小样本问题也是遥感图像检索中一个较为突出的问题。基于以上两方面考虑,本文提出一种基于特征选择和半监督学习的遥感图像检索新方法,该方法主要包括4个方面:1)利用最小描述长度准则自动确定聚类数目;2)结合聚类方法和适当的聚类有效性指标选择最能表示检索目标的特征,在计算聚类有效性指数时,针对遥感