论文部分内容阅读
Polarization-dependent difference of the power spectra from a set of two-dimensional (2D) passive random media is investigated by simultaneously solving Maxwell’s equations for both transverse magnetic (TM) and transverse electric (TE) fields. The random media have the same random constitution but different shapes. Results show that both two polarized states are morphology dependent, and the variety of the shapes has more influence on the selection of TM polarized modes than that of TE polarized modes. Such polarization-dependent difference of morphology property presents a new modeselecting technique for random lasers.
Polarization-dependent difference of the power spectra from a set of two-dimensional (2D) passive random media is investigated by in-between solving Maxwell’s equations for both transverse magnetic (TM) and transverse electric (TE) fields. The random media have the same random constitution but different shapes. Results show both both polarized states are morphology dependent, and the variety of the shapes has more influence on the selection of TM polarized modes than that of TE polarized modes. Such polarization-dependent difference of morphology property presents a new modeselecting technique for random lasers.