论文部分内容阅读
视觉注意是人类视觉系统中的重要部分,现有的视觉注意模型大多强调基于自底向上的注意,较少考虑自顶向下的语义,也鲜有针对不同类别图像的特定注意模型。眼动追踪技术可以客观、准确地捕捉到被试的注意焦点,但在视觉注意模型中的应用还比较少见。因此,提出了一种自底向上和自顶向下注意相结合的分类视觉注意模型CMVA,该模型针对不同类别的图像,在眼动数据的基础上训练分类视觉注意模型来进行视觉显著性预测。实验结果表明:与现有的其它8个视觉注意模型相比,该模型的性能最优。