A machine learning approach to tungsten prospectivity modelling using knowledge-driven feature extra

来源 :地学前缘(英文版) | 被引量 : 0次 | 上传用户:qq345071009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Novel mineral prospectivity modelling presented here applies knowledge-driven feature extraction to a data-driven machine learning approach for tungsten mineralisation. The method emphasises the importance of appropriate model evaluation and develops a new Confidence Metric to generate spatially refined and robust exploration targets. The data-driven Random Forest?algorithm is employed to model tungsten mineralisation in SW England using a range of geological, geochemical and geophysical evidence layers which include a depth to granite evidence layer. Two models are presented, one using standardised input variables and a second that implements fuzzy set theory as part of an augmented feature extraction step. The use of fuzzy data transformations mean feature extraction can incorporate some user-knowledge about the mineralisation into the model. The typically subjective approach is guided using the Receiver Operating Characteristics (ROC) curve tool where transformed data are compared to known training samples. The modelling is conducted using 34 known true positive samples with 10 sets of randomly generated true negative samples to test the random effect on the model. The two models have similar accuracy but show different spatial distributions when identifying highly pro-spective targets. Areal analysis shows that the fuzzy-transformed model is a better discriminator and highlights three areas of high prospectivity that were not previously known. The Confidence Metric, derived from model variance, is employed to further evaluate the models. The new metric is useful for refining exploration targets and highlighting the most robust areas for follow-up investigation. The fuzzy-transformed model is shown to contain larger areas of high model confidence compared to the model using standardised variables. Finally, legacy mining data, from drilling reports and mine descriptions, is used to further validate the fuzzy-transformed model and gauge the depth of potential deposits. Descriptions of mineralisation corroborate that the targets generated in these models could be undercover at depths of less than 300 m. In summary, the modelling workflow presented herein provides a novel integration of knowledge-driven feature extraction with data-driven machine learning modelling, while the newly derived Confidence Metric generates reliable mineral exploration targets.
其他文献
流言:近年来,市面上很多烘焙蔬菜脆片类食品受到了广大消费者的欢迎.很多人认为这类产品和普通蔬菜之间的区别仅仅是水分的多少,而营养成分上的差别并不大,所以可以用它们来
期刊
大王具足虫排便频率极低rn来自海底的奇怪生物大王具足虫,或许是最令人毛骨悚然的虫形生物之一——它们有两对触须,黑漆漆的大复眼由4000只平面小眼组成,它们的嘴有四套颚,平
期刊
进化论rn生物学家总是从进化论的角度来解释女性身高普遍低于男性的现象,其中主要是从动物雄性和雌性的体形和身高来推论人类的男性和女性的身高.当然,动物的雄性比雌性要高
期刊
利用品种间杂交创造新变异,是当前选育青稞优良新品种的有效途径之一。然而,要多快好省地取得育种成果,就要制定出切合实际的育种目标,配制恰当的杂交组合,进行有效地选择和
中篇rn1rn一架空天飞机从地球轨道高速下降,穿过大气层后,缓慢减速,稳定航行在距地面万米的高空.rn宽阔的主舱中间,坐着一个穿黑色长袍的男人.十几个荷枪实弹的特种兵在他四
期刊
串叶松香草,属菊科多年生草本植物,又名菊花草。因其植株上部的对生叶片基部相连呈杯状,茎秆从两片叶中贯串抽出形似一串叶,又因其根含有松脂味乳汁,故被称为串叶松香草,简
“不会生气”的两种形式rn我们首先来看看,什么叫“不会生气”?rn“生不了别人的气,我便生自己的气”——rn自我攻击rn给“生气”组词,我们会听到这样一个词:生闷气.与此相关
期刊
生理机制——五羟色胺与褪黑素rn在下雨的时候,我们容易感到困倦,也容易感到心情不好,这就不得不提到五羟色胺和褪黑素这两种化学物质.五羟色胺的活跃程度与我们的愉悦感受相
期刊
位于元素周期表第20位的钙,常温下为银白色晶体.碳酸钙是自然界最常见的钙的化合物,它不仅是大理石的主要化学成分,动物的骨骼、贝壳、蛋壳等组织中也都含有它.rn钙不仅存在
期刊
The South Mid-Atlantic Ridge (SMAR) 19°S segment, approximately located along the line of Saint Helena vol-canic chain (created by Saint Helena mantle plume),