论文部分内容阅读
支持向量机是一种新的机器学习的方法。它以统计学习理论为基础,能够较好地解决小样本的学习问题。由于其出色的学习性能,该技术已成为当前国际机器学习界的研究热点。支持向量函数回归(SVR)是SVM的一个重要分支,它已经成功地应用于系统识别、非线性系统的预测等方面,并取得了较好的效果。文中通过图像的SVR表示,对SVR图像的边缘检测进行了研究。文中算例说明了该方法在实际应用中的可行性。实验结果表明,该算法能有效提高图像边缘检测效果。同时对其他边缘检测方法有一定的借鉴作用。