论文部分内容阅读
应用余弦模型对北京市 195 9~ 1998年痢疾月平均发病率的对数拟合及发病季节特征进行分析 ,得到简单余弦函数方程y∧1i=1 5 2 8+0 5 88Cos(ti- 188 48) ,含第二谐量三角多项式 y∧2i=1 5 2 8+0 5 88Cos(ti- 188 48) +0 119Cos( 2ti-15 19) ,并对实际资料进行拟合 ,效果良好。求得决定系数R12 =0 91 R22 =0 99,求得顶相角 φ1=188 48°说明北京市痢疾发病高峰时点在 7月 2 4日 ,发病的低谷时间是 1月上旬 ( 1月 9日 )。
Applying the cosine model to the logarithmic fitting of the monthly average incidence of cesium in Beijing from 195 to 1998 in Beijing, and analyzing seasonal characteristics, a simple cosine function equation y∧1i=1 5 2 8+0 5 88Cos (ti- 188 48) was obtained. ), including the second harmonic triangle polynomial y∧2i=1 5 2 8+0 5 88Cos (ti- 188 48) +0 119Cos( 2ti-15 19), and fitting the actual data, the result is good. Obtain the determination coefficient R12 =0 91 R22 =0 99, and find the top phase angle φ1=188 48°, indicating that the peak incidence of dysentery in Beijing is on July 24, and the onset time is early January (January 9). day).