论文部分内容阅读
采用多分类器结合的方法对城市植被进行分类.首先,以分割获得的城市植被分布斑块为处理基元,在不同特征空间中采集不同的样本,通过ISODATA、马氏距离、最大似然、人工神经网络和专家系统法进行分类,并计算各分类结果的关联程度和各植被类型识别的先验概率;然后利用专家投票的大多数规则对分类结果组合,未分类的对象按照先验识别概率最高的结果归类.精度评价表明:多分类器结合方法显著提高了信息识别的能力;采用多分类器结合的方法比单个分类器获得的最高分类精度提高5.5%,Kappa系数提高7.4%;Z统计值均为负,且