论文部分内容阅读
在原子核的协变密度泛函理论中,核子的运动方程——狄拉克方程是核心内容之一.本评述结合球形核中核子狄拉克方程的数值求解,讨论费米海与狄拉克海中单粒子态及若干相关的物理问题.首先以打靶法为例较为详细地介绍在坐标空间中求解狄拉克方程的过程,以伍兹-萨克森基(包括薛定谔-伍兹-萨克森基和狄拉克-伍兹-萨克森基)展开方法为例介绍在基空间中狄拉克方程的求解方法.完备性的条件要求狄拉克-伍兹-萨克森基空间不仅要包括费米海中的正能量态,而且要包括狄拉克海中的负能量态.因此,需要把单粒子态的研究从正能量态拓展到负能量态.结合负能量态的研究,介绍与这些负能量态对应的反核子谱中存在的自旋对称性及其起源.
In the nuclear covariance density functional theory, the motion equation of the nucleus - the Dirac equation is one of the core contents of this review combined with the numerical solution of the nuclear Dirac equation in the spherical nucleus, discusses the Fermi and Dirac sea single particles State and a number of related physical problems.First of all, shooting method is used as an example to introduce the process of solving Dirac equation in coordinate space in more detail, taking Woods-Saxonian (including Schrödinger-Woods-Saxony and Dirac-Woods-Saxony ) Expansion method as an example to introduce Dirac equation solution in base space.The condition of completeness requires that the Dirac-Woods-Saxon-space space not only include the positive energy state in the Fermi Sea, but also include the negative energy in the Dirac Sea Therefore, it is necessary to extend the study of single-particle states from positive energy to negative energy.According to the study of negative energy states, we introduce the spin symmetry and its origin in the anti-nuclear spectrum corresponding to these negative energy states.