论文部分内容阅读
以处理族性结构信息的计算机表达式—族性结构紧缩关联表(Generic Structure Compact Connection Table,GSCCT)为基础,拟定了一套检索族性结构的筛选策略,即从GSCCT 表中提取出主干环节点的预筛选方案。GSCCT 表包含主干结构节点和叶结构节点,主干节点又分为环节点和非环节点两部分。叶结构节点中含有环节点时,将其提升为主干环节点。该结构匹配方法与传统的在原子节点层次上的算法不同,是在紧缩节点的层次上提取关键信息,即提取族性结构中的主要信息-环结构信息(或称指纹信息)进行预筛选,先不考虑非环节点和叶节点,以避免大量枚举。文中详细介绍了筛选思路和筛选功能的实现过程。
Based on the Generic Structure Compact Connection Table (GSCCT), which is a computer expression that deals with clandestine structure information, a set of screening strategies to retrieve clan structure was developed, which is to extract the main link from the GSCCT table Point pre-screening program. The GSCCT table contains backbone structure nodes and leaf structure nodes. The backbone nodes are divided into ring nodes and non-ring nodes. When leaf nodes contain ring nodes, they are promoted as backbone nodes. Different from the traditional algorithms at the atomic node level, this method of structural matching extracts key information at the level of the compact node, that is, extracts the ring structure information (or fingerprinting information) Do not consider non-ring nodes and leaf nodes, in order to avoid a large number of enumerations. The article details the implementation of screening ideas and screening functions.