多跳连接残差注意网络的图像超分辨率重建

来源 :计算机科学 | 被引量 : 0次 | 上传用户:cbg668
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着卷积神经网络深度的不断增加,深度卷积神经网络的训练会变得更加困难。此外,在图像超分辨率中,低分辨率图像的通道特征和输入通常在不同的通道中被平等对待,这就导致了卷积神经网络的表征能力被弱化。为了解决这些问题,提出了一种多跳连接残差注意网络,该网络利用多跳连接中的残差(Residual in Multi-skip Connection, RIMC),构造了具有多个残差组的深度网络。每个残差组包含了一定数量的短跳连接和多跳连接。在RIMC的基础上,主网络被允许穿过多跳连接来绕过丰富的低频信息,同时高频
其他文献
推荐系统缓解了互联网数据量剧增带来的信息过载问题,但传统的推荐系统由于数据稀疏和冷启动等问题导致推荐算法的准确性不高.因此,文中提出了一种基于知识图谱和标签感知的推荐算法(Knowledge Graph and Tag-Aware,KGTA).首先,利用项目和用户标签信息,通过知识图谱表示学习捕获低阶与高阶特征,将两个知识图谱中实体和关系的语义信息嵌入低维的向量空间中,从而获得项目和用户的统一表示.其次,分别利用深度神经网络和加入注意力机制的递归神经网络来提取项目和用户的潜在特征.最后,根据潜在特征预测评
在给定的任务中分析各种数据时,目前大多数研究只针对单源数据进行分析,缺乏应用于多源数据的方法.但如今数据日益丰富,因此提出一种多源数据融合框架,用于融合多种网络平台数据.同一平台数据中包含文本与各种属性,同时不同平台的数据在内容与形式方面也存在很大差异.然而现有的网络信息挖掘方法大多仅使用同一平台中的部分数据进行分析,忽略了不同平台的数据之间存在的相互作用.因此文中提出一种数据融合框架,一方面,能基于图的强大表示能力融合同一平台不同类型的特征,从而提升单个平台的任务性能;另一方面能够利用不同平台的数据特征