论文部分内容阅读
遥感图像空间分辨率的提高,为目标物的纹理特征和形状特征的提取提供了客观基础,同时也使得传统的基于像元的分类识别方法受到了严重的挑战.因此,需要对传统的方法进行改进或发展新的方法.本文采用面向对象的分析思想,通过图像分割和分割对象的矢量化等一系列的预处理,并在此基础上实现了目标形状信息的提取,最后综合利用光谱特征和形状特征应用模糊分类器实现两种典型的人造目标的分类提取实验.识别的精度评价主要通过目视解译完成.分析表明,形状信息的提取大大丰富了目标识别的特征库,尤其在感兴趣目标与背景物具有相近的光谱反应而形状特征有明显差异的条件下,这种利用光谱与形状特征整合的提取方法能够大大提高目标的识别精度.