论文部分内容阅读
本文描述了包含有多重实或复极点函数的拉普拉斯反变换的数字计算的一种算法,同时讨论了它的优点和缺点。 这种算法用了一种众所周知的简单数学方法来求一个多项式及其导数在它的一个根处的值。这种方法允许把函数的分子分母多项式分开处理,即是通过将每一多项式除以一个一阶项实现的。多项式与一阶项都含有复系数进行综合除法时更适合于用数字计算。对Pottle算法与本文所提出的算法的执行时间也作了比较。在本文的结尾有一个用于说明该算法的BASIC程序。
This paper describes an algorithm for numerical computation of Laplacian inverse transforms that contains multiple real or complex pole functions, along with its advantages and disadvantages. This algorithm uses a well-known simple mathematical method to find the value of a polynomial and its derivatives at one of its roots. This method allows the numerator and denominator polynomial of the function to be handled separately, that is, by dividing each polynomial by a first order term. Polynomials and first-order terms contain complex coefficients that are more suitable for use in numerical calculations when combined. Pottle algorithm and the algorithm proposed in this article also compared the execution time. At the end of this article there is a BASIC program illustrating the algorithm.