【摘 要】
:
为积极应对化石能源枯竭和生态环境日益严峻等问题,可再生生物质资源的深度开发并进一步替代传统能源或石化原料被广泛认可.利用高效催化技术将生物质资源转化为高附加值的平台化合物,有望衍生出大量具备新颖结构与功能的绿色化学品.2,5-呋喃二甲酸(FDCA)作为重要的生物质基平台化合物之一,具有巨大的市场应用价值,其中因其与化石基对苯二甲酸(PTA)有着极其相似的化学结构,以FDCA替代PTA作为合成单体制备大宗聚合物备受关注.以5-羟甲基糠醛(HMF)为原料,采用多相催化体系(主要是贵金属催化剂)选择氧化制备FD
【机 构】
:
中国科学院宁波材料技术与工程研究所,浙江宁波315201;中国科学院金属研究所,沈阳材料科学国家研究中心,辽宁沈阳110016
论文部分内容阅读
为积极应对化石能源枯竭和生态环境日益严峻等问题,可再生生物质资源的深度开发并进一步替代传统能源或石化原料被广泛认可.利用高效催化技术将生物质资源转化为高附加值的平台化合物,有望衍生出大量具备新颖结构与功能的绿色化学品.2,5-呋喃二甲酸(FDCA)作为重要的生物质基平台化合物之一,具有巨大的市场应用价值,其中因其与化石基对苯二甲酸(PTA)有着极其相似的化学结构,以FDCA替代PTA作为合成单体制备大宗聚合物备受关注.以5-羟甲基糠醛(HMF)为原料,采用多相催化体系(主要是贵金属催化剂)选择氧化制备FDCA是目前广泛采用的方法.但“HMF路线”面临一些基础性的难题,如HMF熔点较低,需低温存储,增加了实际应用中的运输成本;HMF在碱性溶液中易降解,导致反应过程中碳平衡损失;HMF结构中含有的不对称的羟基和醛基官能团在氧化反应中会发生竞争反应,致使反应副产物较多;此外,碱性反应介质中通常会得到醛基优先氧化的中间体5-羟甲基-2-呋喃甲酸(HMFCA),但由于HMFCA结构中羧基官能团的存在使得羟基进一步氧化较为困难,通常需要增加碱浓度、提升温度或压力,使反应条件变得苛刻.因此,寻求新的原料替代HMF,实现温和条件下高效合成FDCA具有重要意义.本文采用改性后的碳纳米管负载Pd催化剂(Pd/o-CNT),从具有独特对称结构的2,5-二羟甲基呋喃(BHMF)出发,提出一种新颖、高效催化合成FDCA的“BHMF路线”.反应在60℃常压下进行,BHMF在20 min内即可完全转化,60 min后FDCA的产率最高可达93.0%,优于相同条件下HMF为原料时的性能(FDCA产率仅为35.7%).相比于未作处理的碳纳米管负载钯催化剂(Pd/CNT),Pd/o-CNT催化剂具有更高含量的氢化钯(PdHx)物种,显著促进了FDCA产率的提升.Pd/o-CNT在循环使用10次后,BHMF仍能完全转化,FDCA产率维持在75%.稳定性下降可能与活性物种流失、团聚及价态变化有关.基于对照试验,本文提出了可能的反应路径,即BHMF主要是通过2,5-二甲酰基呋喃和5-甲酰基-2-呋喃甲酸作为过程中间体,有效转化为FDCA,从而规避并减少生成HMF和活性较低的HMFCA.本文通过以新原料BHMF作底物,实现了高效制备生物基平台化合物FDCA,为生物质的产业化应用提供了新的研究思路.“,”The selective oxidation of 2,5-bis(hydroxymethyl)furan (BHMF) in this work was proven as a promising route to produce 2,5-furandicarboxylic acid (FDCA),an emerging bio-based build-ing-block with wide application.Under ambient pressure,the modified carbon nanotube-supported Pd-based catalysts demonstrate the maximum FDCA yield of 93.0% with a full conversion of BHMF after 60 min at 60 ℃,much superior to that of the traditional route using 5-hydroxymethylfurfural(HMF) as substrates (only a yield of 35.7%).The participation of PdHx active species with metallic Pd can be responsible for the encouraging performance.Meanwhile,a possible reaction pathway proceeding through 2,5-diformylfuran (DFF) and S-formyl-2-furancarboxylic acid (FFCA) as process intermediates is suggested for BHMF route.The present work may provide new opportunities to synthesize other high value-added oxygenates by using BHMF as an alternative feedstock.
其他文献
面对不可再生资源的快速消耗和环境污染的日益加重,寻找清洁可再生能源势在必行.氢能是一种清洁可再生的能源,是目前最有希望替代化石燃料的一种能源.电化学水分解可用来产生高纯氢气,其中析氢催化剂起着至关重要的作用.尽管贵金属铂基催化剂表现出优异的析氢性能,然而稀缺性和高成本限制了其大规模应用.因此,开发高效和地球存量丰富的电催化剂是实现大规模绿色能源转换和存储技术的关键.二维材料可分为非金属材料(如石墨烯、碳化氮和黑磷)和过渡金属基材料(如卤化物、磷酸盐、氧化物、氢氧化物和碳氮金属化合物),具有独特的结构和电化
氧化铜是一种有潜力的光电催化分解水用光阴极材料,但由于其在光电催化分解水过程中会发生严重的光腐蚀,限制了其实际应用.因此,构建有效的保护壳层抑制氧化铜光腐蚀,具有重要意义.虽然原子层沉积技术已成为构建光阴极保护层的主流手段,但由于制造成本高昂,难以满足未来实际应用对低成本和规模化的要求,因此,亟需发展简易、低廉的保护壳层制备手段.从电化学稳定性的角度出发,发现氮化铜(Cu3N)是一种电化学稳定的铜基氮化物,已被广泛应用于电催化还原CO2、N2和O2等领域,具有强的抗电化学还原能力(J.Am.Chem.So
化石燃料的广泛使用导致大气中CO2的排放量急剧增加,进而引起全球变暖和海洋酸化等一系列问题.CO加氢(费托合成)反应是利用非石油来源的原料生产液体燃料和化学品的一种重要途径.同时,利用可再生的H2将CO2转化为高附加值的产品有利于减少对化石燃料的依赖,减轻由于大气中CO2浓度过高带来的负面影响.开发新型、高效、稳定的催化剂是费托合成和CO2加氢制高附加值烃的关键因素之一.Fe基、Co基和Ru基催化剂是费托合成中常用的催化剂.而在CO2加氢反应中,Co基和Ru基催化剂上主要发生甲烷化反应,几乎没有长链烃生成
随着全球经济的快速发展,能源短缺与环境污染成为当今世界共同关注的热点问题,开发和利用洁净能源成为当务之急.近年,以半导体为基础的光催化技术引起了国内外的广泛关注,其中包括光催化分解水制氢、光催化还原CO2、光催化固氮以及光催化降解污染物等.尤其太阳能驱动的光催化分解水和光催化CO2还原均可将太阳能转化为可储存和运输的化学能源.因此,设计高效稳定的光催化材料具有重要意义.中空结构材料由于具有比表面积大、光吸收效率高以及载流子传输路径缩短等优点,在能量转换领域备受关注,且中空材料的内外表面结构为其它组分的沉积
光催化析氢技术被认为是解决化石能源紧缺和环境污染问题的有效途径之一.在传统的光解水体系中,析氧半反应因涉及到复杂的四电子转移和O=O双键形成,成为光催化水分解的决速步骤.光生空穴牺牲试剂的引入虽然可以在一定程度上提高体系的光催化效率,但同时造成了光生空穴氧化能力的浪费,且增加了系统成本.相比之下,构建由光催化析氢和选择性有机合成相结合的双功能反应平台,能够同时利用光生电子和空穴获得绿色的清洁燃料和高值化学品,为解决上述问题提供了一条理想途径.近年来,苯甲醇等生物质衍生物平台分子的光催化选择性氧化引起了人们
铃木偶联反应是合成聚烯烃、苯乙烯和联苯衍生物等功能性有机化合物的有力工具,广泛应用于精细化工、制药和生化工业领域.钯(Pd)基催化剂是目前性能最好的铃木偶联反应催化剂,但钯的低丰度和高成本限制了其大规模应用.因此,提高Pd原子的利用效率,降低Pd用量至关重要.减小金属纳米粒子的尺寸,使其成为小团簇甚至孤立的金属原子是实现金属原子高利用率的有效方法之一.此外,与纳米晶体相比,高度分散的Pd原子和具有低配位和不饱和构型的亚纳米团簇可能会导致催化活性位点数量增加,进而提升Pd基催化剂的性能.然而,高表面自由能使
纯相光催化材料的产氢性能主要受限于较低的电荷分离效率和缓慢的界面催化反应速率.表面负载助催化剂因其能够实现快速转移光生电子和提供界面催化活性中心被认为是促进电荷分离和提升界面催化反应的有效手段.贵金属类材料,尤其是金属铂(Pt),被认为是光催化产氢领域的理想助剂,但储量低和价格昂贵严重制约了其大规模实际应用.因此,发展低成本的产氢助剂对未来光催化产氢技术的发展至关重要.金属银(Ag)是一种优异的导电金属材料,其高电导率(6.3×107 S m-1)能够在光催化产氢反应中快速转移光生电子,从而极大地抑制光生
四溴双酚A(TBBPA)是一种重要的塑料添加剂和阻燃剂,广泛用于树脂、塑料、胶黏剂以及涂料中.它不仅是持久性的机污染物,还是一种内分泌干扰物,具有免疫毒性、神经毒性和细胞毒性.NOx,特别是NO,是主要的大气污染物之一,是形成PM2.5的重要前体,也容易引起酸雨,引发光化学烟雾、臭氧损耗、温室效应等,严重危害生态环境和人类健康.光催化技术以太阳能为驱动力,被认为是高效去除各种环境污染物的有效策略之一.但目前报道的光催化剂,大多仅适用于特定条件下单一污染物的高活性去除,严重限制了其发展,难以满足日益复杂的多
近年来,利用可再生能源分解水制氢进而开展二氧化碳资源化利用的研究引起了学术界和工业界的极大兴趣.科学层面上它暗合了自然光合作用的理念;应用层面上它把二氧化碳变废为宝,既可以得到人类必需的含碳化学品,又可以实现碳中和.甲醇被认为是二氧化碳资源化的最佳选择,可在动力、交通、化工等领域替代煤炭等传统化石能源,也是良好的载氢分子,还可作为基础原料生产烯烃、芳烃等大宗化学品.美国南加州大学Olah教授和中国科学院顾问施春风教授曾先后提出“甲醇经济”和“液态阳光”,系统阐述了上述理念.针对CO2加氢制甲醇过程,开发高
新型多孔材料在诸多领域具有广阔的应用前景,其发展引起了研究者较大关注.在过去的十年中,大量的先进多孔材料被设计并应用于不同领域.其中,共价有机骨架(COFs)和金属有机骨架(MOFs)材料由于具有结构多样、孔隙可调以及功能多样等独特性质,得到了广泛研究.为了有效地结合各个组分的优点以获得最优性能,科研工作者投入了大量的精力来设计独特的COF/MOF复合材料.目前,已报道了多种方法合成COF/MOF复合材料,但合成过程中引入额外的化学键会分散电子的传递,降低电荷的有效传输,且由于配体的选择性和合成的复杂性都