论文部分内容阅读
讨论了一维多孔性催化剂颗粒在非等温情况下活性组分的最佳分布。活性组分集中在离颗粒中心某一距离的无限薄层上可得到最大的选择性S_(max).该最佳位置决定于非等温效应、传质阻力以及反应速率的相对大小.文中针对连串反应体系,运用数学方法证明了颗粒催化剂活性组分非均匀分布时的最大反应选择性。结果表明,当分布函数为δ-dirac时,连串反应的选择性最大,并讨论了活性组分位置对选择性的影响和体系的多重态.
The optimal distribution of active components of one-dimensional porous catalyst particles under non-isothermal conditions is discussed. The maximal selectivity S max is obtained when the active components are concentrated on an infinite layer at a certain distance from the center of the particle. The optimum location depends on the non-isothermal effect, the mass transfer resistance, and the relative magnitude of the reaction rate. In this paper, for the continuous reaction system, the maximum reaction selectivity of the active component of the particulate catalyst in non-uniform distribution is proved by mathematical method. The results show that when the distribution function is δ-dirac, the selectivity of the series of reactions is the largest, and the influence of the positions of the active components on the selectivity and the multiple states of the system are discussed.