Machine learning identification of impurities in the STM images

来源 :中国物理B(英文版) | 被引量 : 0次 | 上传用户:wanghai19881016
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
We train a neural network to identify impurities in the experimental images obtained by the scanning tunneling micro-scope(STM)measurements.The neural network is first trained with a large number of simulated data and then the trained neural network is applied to identify a set of experimental images taken at different voltages.We use the convolutional neural network to extract features from the images and also implement the attention mechanism to capture the correlations between images taken at different voltages.We note that the simulated data can capture the universal Friedel oscillation but cannot properly describe the non-universal physics short-range physics nearby an impurity,as well as noises in the experimental data.And we emphasize that the key of this approach is to properly deal with these differences between simulated data and experimental data.Here we show that even by including uncorrelated white noises in the simulated data,the performance of the neural network on experimental data can be significantly improved.To prevent the neural network from learning unphysical short-range physics,we also develop another method to evaluate the confidence of the neural network prediction on experimental data and to add this confidence measure into the loss function.We show that adding such an extra loss function can also improve the performance on experimental data.Our research can inspire future similar applications of machine learning on experimental data analysis.
其他文献
氢化酶是微生物产氢的核心,模拟氢化酶的结构或功能实现人工可控的温和条件下的氢能生产,在清洁能源领域具有十分重要的意义.本文合成了四个新的仿生[FeFe]-氢化酶模型化合物
在提高传感器"3S"(灵敏度、选择性、长期稳定性)性能的途径中,掺杂和复合金属氧化物被认为是有效提高传感器的灵敏度和选择性的途径[1][2][3].以水滑石(LDHs)阴离子型层状黏
按照文献方法合成并表征了锰取代磷钼酸(Na7PMonMnO40,简写为PMonMn),并采用酶动力学方法研究其对酪氨酸酶的抑制作用[1-3].结果表明,PMo11Mn对酪氨酸酶有显著地抑制作用,IC5
The dynamics of produced excited carriers under the irradiation of Ge crystal is investigated theoretically by using femtosecond laser pulse.A two-temperature m
We investigate the alignment dependence of the strong laser dissociation dynamics of molecule C2H22+in the frame of real-time and real-space time-dependent dens
今冬明春完成与结束土地改革紧密结合生产的方针,在已发布的「山东省土地改革具体实施办法」和「中共中央山东分局关于今冬明春完成与结束土地改革的指示」中业有明确规定和
We propose a two-dimensional metal grating with rhombus particles on a gold film structure for refractive index sensing due to its perfect absorption at near-in
陶劲涛,字云之,笔名陶写斋,别署天字布衣。1959年8月生于甘肃靖远。进修于中国人民大学研究生班。中国书法家协会会员、甘肃省书法家协会理事兼创作委员会委员、中国楹联学会