论文部分内容阅读
为提高短时交通状态预测的精度,使交通管理者更有效地进行交通规划和管理,本文把基于L 1范数距离度量的最小二乘孪生有界支持向量机(twin bounded support vector machine,TBSVM)扩展成多分类算法用于短时交通状态预测,简称MLSTBSVM L1.在实验数据上对MLSTBSVM L1算法的有效性进行验证,实验结果表明,相比于其他预测算法,提出的MLSTBSVM L1算法在预测精度上有较大提升.