论文部分内容阅读
The scaling of the flowfield in a gas-gas combustion chamber is investigated theoretically, numerically and experimentally. To obtain the scaling criterion of the gas-gas combustion flowfield, formulation analysis of the three- dimensional (3D) Navier-Stokes equations for a gaseous multi-component mixing reaction flow is conducted and dimensional analysis on the gas-gas combustion phenomena is also carried out. The criterion implies that the size and the pressure of the gas-gas combustion chamber can be changed. Based on the criterion, multi-element injector chambers with different geometric sizes and at different chamber pressures ranging from 3 MPa to 20 MPa are numerically simulated. A multi-element injector chamber is designed and hot-fire tested at five chamber pressures from 1.64 MPa to 3.68 MPa. Wall temperature measurements are used to understand the similarity of combustion flowfields in the tests. The results have verified the similarities between combustion flowfields under different chamber pressures and geometries, with the criterion applied.
The scaling of the flowfield in a gas-gas combustion chamber is considered theoretically, numerically and experimentally. To obtain the scaling criterion of the gas-gas combustion flowfield, formulation analysis of the three-dimensional (3D) Navier-Stokes equations for a gaseous multi-component mixing reaction flow is conducted and dimensional analysis on the gas-gas combustion phenomena is also carried out. The criterion implies that the size and the pressure of the gas-gas combustion chamber can be changed. Based on the criterion, element injector chambers with different geometric sizes and at different chamber voltages ranging from 3 MPa to 20 MPa are numerically simulated. A multi-element injector chamber is designed and hot-fire tested at five chamber pressures from 1.64 MPa to 3.68 MPa. are used to understand the similarity of combustion flowfields in the tests. The results have verified the similarities between combustion flowfields under different chamber pressures and geometries, with the criterion applied.