【摘 要】
:
近几年,我国高校对于信息技术的重视程度越来越高,信息技术的运用越来越频繁,高校对信息技术的运用领域越来越广,其中视音频作品对于教学和管理作用很大,数量越来越多.无论是相关专业的教学使用、教学课件制作以及相关教学视频的制作,视音频作品都有了十分广泛的运用,使得高校越来越重视教师在教学上使用的视音频作品的质量.基于此,高校教师也开始不断地学习和使用更加高效和高质量的视音频制作软件.其中Adobe Audition一直都是最受高校教师及学生欢迎的一款音频处理的软件,Adobe Audition软件能够有效地提高
【机 构】
:
哈尔滨职业技术学院,黑龙江哈尔滨150081
论文部分内容阅读
近几年,我国高校对于信息技术的重视程度越来越高,信息技术的运用越来越频繁,高校对信息技术的运用领域越来越广,其中视音频作品对于教学和管理作用很大,数量越来越多.无论是相关专业的教学使用、教学课件制作以及相关教学视频的制作,视音频作品都有了十分广泛的运用,使得高校越来越重视教师在教学上使用的视音频作品的质量.基于此,高校教师也开始不断地学习和使用更加高效和高质量的视音频制作软件.其中Adobe Audition一直都是最受高校教师及学生欢迎的一款音频处理的软件,Adobe Audition软件能够有效地提高音频作品的声音质量,同时其操作相对简单,因此在高校中使用十分广泛.
其他文献
现有Unet网络分割视网膜血管精度较低,为了更精确地分割出视网膜血管,提出一种基于多分支卷积神经网络的视网膜血管的分割方法.在原有UNet网络模型进行改进,即增加级联结构获取更多信息流,有利于复杂特征的提取,同时提出共享权重残差模块来优化模型.实验在DRIVE数据集上进行验证,实验结果表明所提的网络模型与Unet网络分割结果相比,在准确率、灵敏度等评价指标上均有所提升,显示出更好的性能.
当前用户在互联网中发布的一些文本信息中包含色情、暴力、政治敏感或恶意广告等不良信息,对网络生态环境造成破坏,特别对广大青少年网民的健康成长影响较大.本文提出一种基于SVM的不良信息识别方法,该方法包括文本标记、文本分词、Doc2Vec文本向量化、SVM不良信息分类器训练、SVM不良信息测试5个步骤.实验结果表明该方法能有效识别网络不良信息,为网络不良信息的甄别提供了一种方法参考.
人们在日常生活中常常会遇到因为遗忘个人物品的摆放位置,导致找不到物品的苦恼;另一方面,由于老年人记忆力衰退、年轻人丢三落四的坏习惯以及小孩戏耍打闹,对定位物品的需求也成为问题.基于家庭场景的特殊性,笔者设想通过“新一代AI可寻物对讲机”这一中控平台,实现对各种贴上电子标签的个人物品的精准定位.随着AI+IOT迅速发展,万物互联成为一种发展趋势.
多目标跟踪领域以基于检测的跟踪方法为主,CenterTrack算法提出了以目标中心点为检测对象,每帧输出基于目标中心点生成的热图以辅助下一帧的检测和跟踪的方法.此方法在保证帧率的前提下有效提升了多目标跟踪准确率,但由于其缺乏对目标重识别的关注,当目标遭遇到遮挡或噪声影响从检测结果中丢失时无法将随后重新出现的同一目标识别为原目标,导致ID切换较频繁.该文在CenterTrack算法模型中加入近期丢失跟踪链队列和重识别模块以改善其在重识别方面的表现.输入商场监控录像并取得跟踪结果后,根据行人目标移动与停驻时间
基于深度学习算法,在交通中不同路况中对重载车辆进行检测与流量统计问题有待解决.首先对YOLOv4原理及主要算法进行介绍;之后进行了数据集的标注等预处理,将数据输入到YOLOv4模型中进行训练;最后对实验结果进行了一定的分析,并进行了模型检测,实验效果较好.该算法基本能够实现对不同路况中重载车辆的检测和流量统计.
在利用神经网络进行文本情绪分析时,不同的词嵌入会得到不同的判断结果.该文对比了由文本自身建立的基线模型和预训练词嵌入模型GloVe以及FastText的识别效果,通过实验得出了在不同情况下两种类型的识别优劣性.此外,针对两种预训练词嵌入,得出高频词汇的缺失对总体结果无重要影响的结论.
随着信息技术的不断发展,人工智能技术日臻完善,在医学影像诊断中应用人工智能技术,以提高医学影像诊断的工作效率和正确率,成为近几年研究的热点问题.深度学习技术在图像处理领域取得了巨大成功,在医学影像辅助诊断中的应用也更加普遍.该文首先分析了深度学习技术在医学影像辅助诊断中的应用现状,然后从分类、检测、分割三个项目应用领域介绍了深度学习在医学影像的具体应用,最后具体分析了深度学习技术对于不同成像方式的不同应用.
为解决癌症的诊断问题,提高诊断的效率与准确率,增强诊断的可靠性,运用了TensorFlow搭建训练基于卷积神经网络的癌症分类模型,基于VGG16架构,采用深度单类分类算法,使用迁移学习,采集正常细胞病理学数据,来训练出可以识别癌变数据的模型,从而精准自动地将正常细胞与肿瘤病理学数据分类.结果表明建立的基于迁移学习的分类模型可以很好地帮助病理学家检测癌症,缩短诊断时间.
随着包装企业生产制造自动化、信息化和物联网技术的快速发展,企业数据精细化管理变得越来越重要,传统ERP对数据的分析功能比较欠缺,一般都是对数据进行简单的汇总、分类统计.在大数据时代背景下,如何挖掘数据背后的信息使得数据能够更好地为企业服务,变得越来越重要.文中针对此问题,以包装生产企业信息化系统应用为例,将神经网络模型、遗传算法等人工智能技术应用到信息化系统中,挖掘数据背后的隐藏信息,实现产品精准报价,生产计划自动安排,产品生产标准自动调节,产品质量追踪与溯源.系统经过企业使用,数据挖掘功能完善准确,实现
随着移动智能设备的普及和5G通信网络技术的成熟,人们已经进入移动互联网时代.越来越多的用户使用手机、平板电脑等移动设备访问公共图书馆网站.然而国内大部分公共图书馆网站没有针对移动设备进行优化,影响用户体验.Bootstrap框架是目前较为流行的响应式设计布局框架,使用Bootstrap框架优化国家图书馆官方网站,可以在不改变网站整体结构的前提下,完善其在移动设备上的展现形式,在移动互联网时代为用户提供更好的互联网服务.